The modelling and the numerical simulation of corrosion take part in the general description of the nuclear waste repository. After a brief introduction of the context of the study, I will introduce in a first part the Diffusion Poisson Coupled Model (Electrochemical Acta 2010) that describes the transport of charges in an oxide layer. I will review the main results obtained for the DPCM and...
The modelling and the numerical simulation of corrosion take part in the general description of the nuclear waste repository. After a brief introduction of the context of the study, I will introduce in a first part the Diffusion Poisson Coupled Model (Electrochemical Acta 2010) that describes the transport of charges in an oxide layer. I will review the main results obtained for the DPCM and...
This study is motivated by the modeling of liquid-vapor flows with phase transitions, specifically focusing on the evolution of coolant within a heat exchanger, such as the core of a Pressurized Water Reactor. We investigate an advection-diffusion equation incorporating a degenerate and nonlinear thermal diffusion coefficient. The degeneracy arises from a liquid-vapor mixture at saturation,...
This study is motivated by the modeling of liquid-vapor flows with phase transitions, specifically focusing on the evolution of coolant within a heat exchanger, such as the core of a Pressurized Water Reactor. We investigate an advection-diffusion equation incorporating a degenerate and nonlinear thermal diffusion coefficient. The degeneracy arises from a liquid-vapor mixture at saturation,...
Les calculs de criticité en neutronique ont pour objectif de déterminer si un réacteur nucléaire restera stable étant donné une configuration donnée du coeur du réacteur. D'un point de vue mathématique, ces types de calcul nécessitent de résoudre un problème aux valeurs propres non symmétriques pour des opérateurs vérifiant les hypothèses de théorème de Krein-Rutman. Il est très important...
Dans un écoulement diphasique déséquilibré en vitesse, l’évolution du titre massique vapeur 𝑦 peut être modélisé par une équation d’advection-convection non linéaire avec un débit 𝒒𝒚 = 𝒒 + (1 − 𝑦)𝒒𝒓 où 𝒒 est le débit de mélange et 𝒒𝒓 est le débit relatif. Cette équation peut être complétée par un terme source de retour à l’équilibre 𝑦̅ caractérisé par un temps de relaxation 𝜏.
Après avoir...
This presentation deals with the numerical modeling of immiscible three-phase flows. The main focus here is on the numerical treatment of the source terms of the model. A new scheme based on a more coupled approach than the preexisting fractional step strategy is presented. Properties of this scheme are given. Numerical applications highlight the benefits of this scheme in terms of both...
In this lecture we consider the numerical approximation of the neutron transport equation.
First, we will model the relevant physical processes using integro-partial differential equations.
Next, we discuss classical approximation techniques, such as Legendre expansions or the discrete ordinates method, which have mostly been treated independently. We present a variational framework that...
In this lecture we consider the numerical approximation of the neutron transport equation.
First, we will model the relevant physical processes using integro-partial differential equations.
Next, we discuss classical approximation techniques, such as Legendre expansions or the discrete ordinates method, which have mostly been treated independently. We present a variational framework that...
The Nuclear Engineering MOdelling (NEMO) group at Politecnico di Torino is working since many years on various modelling aspects of nuclear engineering, covering both fission and fusion applications, thanks to the active participation of its members to a variety of national and international research projects.
In this seminar, a brief overview of the NEMO group activities will be given. Then,...
In this talk we will focus on the finite volume approximation of the heat equation with a continuous Lipschitz multiplicative noise. The aim is to prove the convergence of the numerical scheme to the unique variational solution of the continuous problem.
To this end, we adapt the method based on Prokhorov's theorem to obtain a first convergence result, then Skorokhod's representation theorem...