Colloque 2015 du GDR 2875, Topologie Algébrique et Applications

Europe/Paris
Amphi Schwartz, bat. 1R3 (Institut de Mathématiques de Toulouse)

Amphi Schwartz, bat. 1R3

Institut de Mathématiques de Toulouse

118 Route de Narbonne 31068 Toulouse
Description

Réunion 2015 : Toulouse

La réunion annuelle du GDR 2875 se tient à l'Institut de Mathématiques de Toulouse UMR 5219 du CNRS et de l'Université de Tolouse 3, Paul Sabatier.

  • La réunion commencera à 9h mercredi 21 octobre (accueil à partir de 8h30) et le programme scientifique terminera à 15h vendredi 23 octobre.



Conférenciers invités

Stéphane Baseilhac (Montpellier)
Urtzi Buijs (UCL Louvain/ Malaga)
Diarmuid Crowley (Aberdeen)
Thomas Ehrhard (Paris 7)
Yaël Frégier (Lens)
Grégory Ginot (Paris 6) - Minicours
Claudia Scheimbauer (MPI Bonn)
Greg Stevenson (Bielefeld)
Bertrand Toën (Toulouse)
 

Organisateurs : Marcello Bernardara (Toulouse), Geoffrey Powell (Responsable du GDR, Angers)
Comité Scientifique : Natalia Castellana (Barcelone), Marcello Bernardara (Toulouse), Geoffrey Powell (Angers), Stephen Theriault (Southampton)
Secrétariat : Marie-Laure Ausset (Toulouse), Alexandra Le Petitcorps (Gestionnaire du GDR, Angers)

Site web du GDR

Informations pratiques

 

  • Hébergement: Deux types d'hébérgement sont proposés aux participants.

         • Hôtel Riquet

         • Résidence Adagio Jolimont

       

Partenaires


 

Participants
  • Andrea Cesaro
  • Andrea Gagna
  • Anthony Blanc
  • Arthur Soulié
  • Aurélien DJAMENT
  • Benoit Fresse
  • Bertrand Toën
  • Bérénice Delcroix-Oger
  • Christian Ausoni
  • Christine Vespa
  • Claudia Scheimbauer
  • Damien Calaque
  • Damien Lejay
  • Diarmuid Crowley
  • Dimitri Ara
  • Emily Burgunder
  • Eric Hoffbeck
  • Fosco Loregian
  • Geoffrey Powell
  • Geoffroy Horel
  • Greg Stevenson
  • Grégory GINOT
  • Ivo Dell'Ambrogio
  • Jacques Darné
  • James Huglo
  • Joan Bellier-Millès
  • Johan Leray
  • Joseph Tapia
  • José Gabriel Carrasquel Vera
  • Le Chi Quyet NGUYEN
  • Louis Carlier
  • luc menichi
  • Marcello Bernardara
  • Martin Palmer
  • Mathieu Klimczak
  • Michel Vaquie
  • Najib Idrissi
  • Ramzi Ksouri
  • Rosona Eldred
  • Sinan Yalin
  • Stephane Baseilhac
  • Thibault Defourneau
  • Thomas Beaudouin
  • Thomas Ehrhard
  • Urtzi Buijs
  • Viet Cuong Pham
  • Vincent Franjou
  • Wolfgang Pitsch
  • Yaël Frégier
    • 1
      Factorization homology and applications I: Axioms Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Lecture I: Factorization homology is a bifunctor from (structured) manifolds of dimension n and algebras over the little n-cubes operad. We will explain the axioms it satisfies and how it can be thought of as a kind of (derived) generalization of Eilenberg-Steenrod usual axioms of Homology of spaces. We will also give some examples .
      Speaker: Dr Grégory Ginot (Paris 6)
    • 10:15 AM
      Café Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 2
      Comparing the homotopy functor calculi Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      In the 90s, Goodwillie developed a calculus of homotopy functors of spaces/spectra, which gave rise to other variants, such as the orthogonal calculus of Weiss for functors of real inner product spaces. I will report on joint work with David Barnes wherein we formalize the comparison of these two theories, which involves making rigorous the folk result that n-excisive implies n-polynomial.
      Speaker: Dr Rosona Eldred (Münster)
    • 3
      Aspects of hyperbolic scissors congruences in quantum topology Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      I will explain how the 2-3 triangulation move, in the context of hyperbolic polyhedra, gives rise to an essentially unique sequence of (2+1)-dimensional QFT, including the Chern-Simons functional of sl(2,C)-connections (as the classical case), quantum Teichmüller theory, and the quantum hyperbolic invariants of 3-manifolds.
      Speaker: Prof. Stéphane Baseilhac (Montpellier)
    • 12:40 PM
      Déjeuner Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 4
      The rational classification of (n-1)-connected (4n-1)-manifolds (n > 1) Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      I shall report on joint work with Johannes Nordström in which we identify a new invariant of the rational homotopy type of a space X, which we call the Bianchi-Massey tensor. The Bianchi-Massey tensor is a linear map on the degree (4n-1) rational cohomology of X taking values in a subspace of the 4-fold tensor product of the degree n cohomology of X. We use the Bianchi-Massey tensor to show that there are many (n-1)-connected (4n-1)-manifolds which are not formal but which have no non-zero Massey products, and to present a classification of simply-connected 7-manifolds up to finite ambiguity.
      Speaker: Dr Diarmuid Crowley (Aberdeen)
    • 3:20 PM
      Café Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 5
      On the deformation theory of dg-categories Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      This is work in progress with Ludmil Katzarkov, Pranav Pandit and Bertrand Toën. I will explain how to use the theory of formal moduli problems of Lurie to obtain a better understanding of the deformation theory of a dg-category up to Morita equivalence, based on previous work by Preygel. This leads to a finiteness result about any formal deformation of a smooth and proper dg-category.
      Speaker: Anthony Blanc (MPI Bonn)
      Transparents
    • 6
      Gorenstein categories and universal coefficient theorems Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      One can frequently interpret universal coefficient theorems as computations of hom-sets in some triangulated category T via morphisms and extensions between certain cohomological functors. The relevant cohomological functors are obtained by restricting the hom-functors of T to a "suitably nice" subcategory C. I'll discuss joint work with Ivo Dell'Ambrogio and Jan Stovicek which explains when C is "suitably nice" in terms of Gorenstein homological algebra in the category of representations of C and gives criteria to recognise suitably nice subcategories.
      Speaker: Dr Greg Stevenson (Bielefeld)
    • 7
      Factorization homology and applications II: Computations for triangulated spaces Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Lecture II: we will explain how factorization homology (as defined in the first lecture) can be computed from a triangulation using higher Hochschild type homology.
      Speaker: Dr Grégory Ginot (Paris 6)
    • 10:15 AM
      Café Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 8
      Homological stability and non-stability for configuration spaces on closed manifolds Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Unordered configuration spaces of points (or particles) on connected manifolds are basic objects that appear in many different areas within topology. When the manifold M is non-compact, a theorem of McDuff and Segal states that these spaces are homologically stable, with integral coefficients, as the number of points goes to infinity. When M is closed, however, these spaces are in general homologically *unstable* - one can see this already in the degree-1 homology of configuration spaces on the 2-sphere. Moreover, there are natural "stabilisation" maps between configuration spaces in the non-compact case, which do not exist when M is closed. I will describe some joint work with Federico Cantero, in which we prove several results that show that configuration spaces on closed manifolds nevertheless exhibit some more subtle kinds of stable behaviour. For example, we prove homological stability for odd-dimensional M after inverting 2 in the coefficients, and for even-dimensional M (with *non-vanishing* Euler characteristic) we prove that the mod-p homology of the configuration spaces is eventually periodic, with an explicit upper bound for the period. We also construct so-called "replication maps" between configuration spaces (when M has *vanishing* Euler characteristic), which induce homology isomorphisms in a stable range after inverting certain primes. This builds on and improves previous work of several others, including O. Randal-Williams and [M. Bendersky - J. Miller]. The periodicity result is very similar to a theorem of R. Nagpal, although we have different estimates for the period. Very recently, the upper bound for the period has been improved in work of [A. Kupers - J. Miller], who also recover our result for odd-dimensional M with coefficients in Z[1/2] and give a more explicit description of the corresponding isomorphisms. There is also very recent work of [S. Galatius - O. Randal-Williams], who prove analogous "stability and non-stability" results for classifying spaces of diffeomorphism groups of high-dimensional closed manifolds. If time permits, I will also briefly describe some of this subsequent work, as well as new directions to explore.
      Speaker: Martin Palmer (Université Paris 13)
    • 9
      Catégories, logique linéaire et langages de programmation Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      On verra comment les notions de catégorie monoïdale, d'adjonction et de monade/comonade sont intimement liées à la sémantique des langages de programmation fonctionnels et à l'interprétation calculatoire des preuves. Ce lien se comprend bien à travers la logique linéaire, un raffinement de la logique intuitionniste et de la logique classique introduit par Jean-Yves Girard dans les années 1980.
      Speaker: Thomas Ehrhard (Paris 7)
    • 12:40 PM
      Déjeuner Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 10
      Generalized Quillen rational homotopy and its applications Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Starting from the study of the rational homotopy type of mapping spaces under Quillen's approach, we develop homotopy techniques in order to connect rational homotopy theory with a wide range of areas such as deformation theory and number theory.
      Speaker: Dr Urtzi Buijs (UCL Louvain/ Malaga)
      Transparents
    • 3:20 PM
      Café Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 11
      Algèbres preLie à puissances divisées Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Les algèbres preLie apparaissent naturellement dans plusieurs domaines des mathématiques, notamment dans la théorie de la déformation des structures algébriques. Le but de cet exposé est d'expliquer la construction de structures à puissances divisées, $\Lambda(PreLie,−)$- et $\Gamma(PreLie,−)$-algèbres associées aux algèbres preLie et ses applications. La définition de ces structures à puissances divisées se base sur la notion d’algèbre à symétries divisées introduite par B. Fresse dans le contexte des opérades afin de généraliser des opérations définies par H. Cartan sur l’homotopie des algèbres commutatives simpliciales. On montrera que les $\Lambda(PreLie,−)$-algèbres sont identifiées avec les algèbres preLie restreintes introduites par A. Dzhumadil'daev. On donnera une description explicite des $\Gamma(PreLie,−)$-algèbres en terme d'opérations de type brace et de ses applications dans la théorie de la déformation.
      Speaker: Mr Andrea Cesaro (Université Lille 1)
      Transparents
    • 12
      Application moment à homotopie près Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Les symétries des systèmes Hamiltoniens sur une variété symplectique peuvent être, dans les bons cas, exprimés en termes d'application moment. D'autre part il existe une généralisation de la mécanique Hamiltonienne pour des formes fermées de degré supérieur à deux. Ceci apparait par exemple lorsque l'on considère des structures symplectiques sur des espaces de lacets. Le rôle des crochets de Poisson est alors joué par une algèbre $L_\infty$. Il est alors naturel de chercher l'analogue de la notion d'application moment dans ce cadre. Nous avons introduit dans un travail commun avec Martin Callies, Chris Rogers et Marco Zambon la notion d'application moment à homotopie près en tant que morphisme $L_\infty$ entre l'algèbre de Lie encodant les symétries et l'algèbre $L_\infty$ ,,de Poisson". En particulier, dans ce nouveau cadre, la correspondance due à Atiyah et Bott entre cocycles en cohomologie équivariante et couples (application moment, forme symplectique) s'étend.
      Speaker: Dr Yaël Frégier (Lens)
    • 7:30 PM
      Dîner 49 grande rue de Nazareth (Chez Navarre)

      49 grande rue de Nazareth

      Chez Navarre

      Dîner social (heure à confirmer)

    • 13
      Factorization homology and applications III: Applications to E_n-algebras Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Lecture III: we will review some applications of factorization homology as an invariant of little n-cubes algebras. In particular, we will give an overview of Bar constructions for little n-cubes algebras and state non-abelian Poincaré duality, which computes factorization homology with values in iterated loop spaces.
      Speaker: Dr Grégory Ginot (Paris 6)
    • 10:15 AM
      Café Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 14
      Catégories à dualité Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      Nous définissons la notion de foncteur à dualité dans la catégorie $\mathcal{C}\mathrm{-mod}$ des foncteurs covariants d'une catégorie $\mathcal{C}$ vers $k\mathrm{-mod}$. On donne une caractérisation pour l'existence d'un foncteur à dualité. Nous illustrons cette notion par des exemples.
      Speaker: Ramzi Ksouri (Sousse)
    • 15
      (Op)lax natural transformations for higher categories, relative quantum field theories, and the "even higher" Morita category Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      A relative (also called twisted) quantum field theory should be some transformation between quantum field theories, which themselves are symmetric monoidal functors out of a space-time category. In examples, the notion of natural transformation turns out to be too strong, making it necessary to relax it. In joint work with Theo Johson-Freyd we provide a framework for both lax and oplax transformations and their higher analogs, known as transfors, between strong $(\infty, n)$-functors. It is given by a double $(\infty,n)$-category built out of the target $(\infty, n)$-category that we call its (op)lax square, which governs the desired diagrammatics. Lax or oplax transfors then are functors into parts of the oplax square. Finally, I will explain how to use the (op)lax square to extend the construction of the higher Morita category of $E_d$-algebras in an $(\infty,n)$-category $\mathcal C$ to an even higher level using the higher morphisms of $\mathcal C$.
      Speaker: Dr Claudia Scheimbauer (Max Planck Institute for Mathematics, Bonn)
    • 12:40 PM
      Déjeuner Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
    • 16
      Motivic realizations of categories Amphi Schwartz, bat. 1R3

      Amphi Schwartz, bat. 1R3

      Institut de Mathématiques de Toulouse

      118 Route de Narbonne 31068 Toulouse
      This is a report on a work in progress with Robalo and Vezzosi. I will present the construction of a motivic realization of (dg-)categories over base of arbitrary characteristics, based on some previous work by A. Blanc. This will be used in order to define various realizations of categories, l-adic, de Rham, Betti etc, recovering the usual realizations when applied to the derived category of an algebraic variety. As a consequence I will present an extension of p-adic Hodge theory to the non-commutative setting, as well as a new relations between vanishing cycles and categories of matrix factorizations in positive and mixed characteristics.
      Speaker: Bertrand Toën (CNRS et Toulouse)