Focus on:
All days
Oct 21, 2015
Oct 22, 2015
Oct 23, 2015
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Colloque 2015 du GDR 2875, Topologie Algébrique et Applications
from
Wednesday, October 21, 2015 (9:00 AM)
to
Friday, October 23, 2015 (3:00 PM)
Monday, October 19, 2015
Tuesday, October 20, 2015
Wednesday, October 21, 2015
9:00 AM
Factorization homology and applications I: Axioms
-
Grégory Ginot
(
Paris 6
)
Factorization homology and applications I: Axioms
(TopAlg)
Grégory Ginot
(
Paris 6
)
9:00 AM - 10:15 AM
Room: Amphi Schwartz, bat. 1R3
Lecture I: Factorization homology is a bifunctor from (structured) manifolds of dimension n and algebras over the little n-cubes operad. We will explain the axioms it satisfies and how it can be thought of as a kind of (derived) generalization of Eilenberg-Steenrod usual axioms of Homology of spaces. We will also give some examples .
10:15 AM
Café
Café
10:15 AM - 10:40 AM
Room: Amphi Schwartz, bat. 1R3
10:40 AM
Comparing the homotopy functor calculi
-
Rosona Eldred
(
Münster
)
Comparing the homotopy functor calculi
(TopAlg)
Rosona Eldred
(
Münster
)
10:40 AM - 11:30 AM
Room: Amphi Schwartz, bat. 1R3
In the 90s, Goodwillie developed a calculus of homotopy functors of spaces/spectra, which gave rise to other variants, such as the orthogonal calculus of Weiss for functors of real inner product spaces. I will report on joint work with David Barnes wherein we formalize the comparison of these two theories, which involves making rigorous the folk result that n-excisive implies n-polynomial.
11:40 AM
Aspects of hyperbolic scissors congruences in quantum topology
-
Stéphane Baseilhac
(
Montpellier
)
Aspects of hyperbolic scissors congruences in quantum topology
(TopAlg)
Stéphane Baseilhac
(
Montpellier
)
11:40 AM - 12:30 PM
Room: Amphi Schwartz, bat. 1R3
I will explain how the 2-3 triangulation move, in the context of hyperbolic polyhedra, gives rise to an essentially unique sequence of (2+1)-dimensional QFT, including the Chern-Simons functional of sl(2,C)-connections (as the classical case), quantum Teichmüller theory, and the quantum hyperbolic invariants of 3-manifolds.
12:40 PM
Déjeuner
Déjeuner
12:40 PM - 2:20 PM
Room: Amphi Schwartz, bat. 1R3
2:20 PM
The rational classification of (n-1)-connected (4n-1)-manifolds (n > 1)
-
Diarmuid Crowley
(
Aberdeen
)
The rational classification of (n-1)-connected (4n-1)-manifolds (n > 1)
(TopAlg)
Diarmuid Crowley
(
Aberdeen
)
2:20 PM - 3:10 PM
Room: Amphi Schwartz, bat. 1R3
I shall report on joint work with Johannes Nordström in which we identify a new invariant of the rational homotopy type of a space X, which we call the Bianchi-Massey tensor. The Bianchi-Massey tensor is a linear map on the degree (4n-1) rational cohomology of X taking values in a subspace of the 4-fold tensor product of the degree n cohomology of X. We use the Bianchi-Massey tensor to show that there are many (n-1)-connected (4n-1)-manifolds which are not formal but which have no non-zero Massey products, and to present a classification of simply-connected 7-manifolds up to finite ambiguity.
3:20 PM
Café
Café
3:20 PM - 3:40 PM
Room: Amphi Schwartz, bat. 1R3
3:40 PM
On the deformation theory of dg-categories
-
Anthony Blanc
(
MPI Bonn
)
On the deformation theory of dg-categories
Anthony Blanc
(
MPI Bonn
)
3:40 PM - 4:30 PM
Room: Amphi Schwartz, bat. 1R3
This is work in progress with Ludmil Katzarkov, Pranav Pandit and Bertrand Toën. I will explain how to use the theory of formal moduli problems of Lurie to obtain a better understanding of the deformation theory of a dg-category up to Morita equivalence, based on previous work by Preygel. This leads to a finiteness result about any formal deformation of a smooth and proper dg-category.
4:40 PM
Gorenstein categories and universal coefficient theorems
-
Greg Stevenson
(
Bielefeld
)
Gorenstein categories and universal coefficient theorems
(TopAlg)
Greg Stevenson
(
Bielefeld
)
4:40 PM - 5:30 PM
Room: Amphi Schwartz, bat. 1R3
One can frequently interpret universal coefficient theorems as computations of hom-sets in some triangulated category T via morphisms and extensions between certain cohomological functors. The relevant cohomological functors are obtained by restricting the hom-functors of T to a "suitably nice" subcategory C. I'll discuss joint work with Ivo Dell'Ambrogio and Jan Stovicek which explains when C is "suitably nice" in terms of Gorenstein homological algebra in the category of representations of C and gives criteria to recognise suitably nice subcategories.
Thursday, October 22, 2015
9:00 AM
Factorization homology and applications II: Computations for triangulated spaces
-
Grégory Ginot
(
Paris 6
)
Factorization homology and applications II: Computations for triangulated spaces
(TopAlg)
Grégory Ginot
(
Paris 6
)
9:00 AM - 10:15 AM
Room: Amphi Schwartz, bat. 1R3
Lecture II: we will explain how factorization homology (as defined in the first lecture) can be computed from a triangulation using higher Hochschild type homology.
10:15 AM
Café
Café
10:15 AM - 10:40 AM
Room: Amphi Schwartz, bat. 1R3
10:40 AM
Homological stability and non-stability for configuration spaces on closed manifolds
-
Martin Palmer
(
Université Paris 13
)
Homological stability and non-stability for configuration spaces on closed manifolds
(TopAlg)
Martin Palmer
(
Université Paris 13
)
10:40 AM - 11:30 AM
Room: Amphi Schwartz, bat. 1R3
Unordered configuration spaces of points (or particles) on connected manifolds are basic objects that appear in many different areas within topology. When the manifold M is non-compact, a theorem of McDuff and Segal states that these spaces are homologically stable, with integral coefficients, as the number of points goes to infinity. When M is closed, however, these spaces are in general homologically *unstable* - one can see this already in the degree-1 homology of configuration spaces on the 2-sphere. Moreover, there are natural "stabilisation" maps between configuration spaces in the non-compact case, which do not exist when M is closed. I will describe some joint work with Federico Cantero, in which we prove several results that show that configuration spaces on closed manifolds nevertheless exhibit some more subtle kinds of stable behaviour. For example, we prove homological stability for odd-dimensional M after inverting 2 in the coefficients, and for even-dimensional M (with *non-vanishing* Euler characteristic) we prove that the mod-p homology of the configuration spaces is eventually periodic, with an explicit upper bound for the period. We also construct so-called "replication maps" between configuration spaces (when M has *vanishing* Euler characteristic), which induce homology isomorphisms in a stable range after inverting certain primes. This builds on and improves previous work of several others, including O. Randal-Williams and [M. Bendersky - J. Miller]. The periodicity result is very similar to a theorem of R. Nagpal, although we have different estimates for the period. Very recently, the upper bound for the period has been improved in work of [A. Kupers - J. Miller], who also recover our result for odd-dimensional M with coefficients in Z[1/2] and give a more explicit description of the corresponding isomorphisms. There is also very recent work of [S. Galatius - O. Randal-Williams], who prove analogous "stability and non-stability" results for classifying spaces of diffeomorphism groups of high-dimensional closed manifolds. If time permits, I will also briefly describe some of this subsequent work, as well as new directions to explore.
11:40 AM
Catégories, logique linéaire et langages de programmation
-
Thomas Ehrhard
(
Paris 7
)
Catégories, logique linéaire et langages de programmation
(TopAlg)
Thomas Ehrhard
(
Paris 7
)
11:40 AM - 12:30 PM
Room: Amphi Schwartz, bat. 1R3
On verra comment les notions de catégorie monoïdale, d'adjonction et de monade/comonade sont intimement liées à la sémantique des langages de programmation fonctionnels et à l'interprétation calculatoire des preuves. Ce lien se comprend bien à travers la logique linéaire, un raffinement de la logique intuitionniste et de la logique classique introduit par Jean-Yves Girard dans les années 1980.
12:40 PM
Déjeuner
Déjeuner
12:40 PM - 2:20 PM
Room: Amphi Schwartz, bat. 1R3
2:20 PM
Generalized Quillen rational homotopy and its applications
-
Urtzi Buijs
(
UCL Louvain/ Malaga
)
Generalized Quillen rational homotopy and its applications
(TopAlg)
Urtzi Buijs
(
UCL Louvain/ Malaga
)
2:20 PM - 3:10 PM
Room: Amphi Schwartz, bat. 1R3
Starting from the study of the rational homotopy type of mapping spaces under Quillen's approach, we develop homotopy techniques in order to connect rational homotopy theory with a wide range of areas such as deformation theory and number theory.
3:20 PM
Café
Café
3:20 PM - 3:40 PM
Room: Amphi Schwartz, bat. 1R3
3:40 PM
Algèbres preLie à puissances divisées
-
Andrea Cesaro
(
Université Lille 1
)
Algèbres preLie à puissances divisées
(TopAlg)
Andrea Cesaro
(
Université Lille 1
)
3:40 PM - 4:30 PM
Room: Amphi Schwartz, bat. 1R3
Les algèbres preLie apparaissent naturellement dans plusieurs domaines des mathématiques, notamment dans la théorie de la déformation des structures algébriques. Le but de cet exposé est d'expliquer la construction de structures à puissances divisées, $\Lambda(PreLie,−)$- et $\Gamma(PreLie,−)$-algèbres associées aux algèbres preLie et ses applications. La définition de ces structures à puissances divisées se base sur la notion d’algèbre à symétries divisées introduite par B. Fresse dans le contexte des opérades afin de généraliser des opérations définies par H. Cartan sur l’homotopie des algèbres commutatives simpliciales. On montrera que les $\Lambda(PreLie,−)$-algèbres sont identifiées avec les algèbres preLie restreintes introduites par A. Dzhumadil'daev. On donnera une description explicite des $\Gamma(PreLie,−)$-algèbres en terme d'opérations de type brace et de ses applications dans la théorie de la déformation.
4:40 PM
Application moment à homotopie près
-
Yaël Frégier
(
Lens
)
Application moment à homotopie près
(TopAlg)
Yaël Frégier
(
Lens
)
4:40 PM - 5:30 PM
Room: Amphi Schwartz, bat. 1R3
Les symétries des systèmes Hamiltoniens sur une variété symplectique peuvent être, dans les bons cas, exprimés en termes d'application moment. D'autre part il existe une généralisation de la mécanique Hamiltonienne pour des formes fermées de degré supérieur à deux. Ceci apparait par exemple lorsque l'on considère des structures symplectiques sur des espaces de lacets. Le rôle des crochets de Poisson est alors joué par une algèbre $L_\infty$. Il est alors naturel de chercher l'analogue de la notion d'application moment dans ce cadre. Nous avons introduit dans un travail commun avec Martin Callies, Chris Rogers et Marco Zambon la notion d'application moment à homotopie près en tant que morphisme $L_\infty$ entre l'algèbre de Lie encodant les symétries et l'algèbre $L_\infty$ ,,de Poisson". En particulier, dans ce nouveau cadre, la correspondance due à Atiyah et Bott entre cocycles en cohomologie équivariante et couples (application moment, forme symplectique) s'étend.
7:30 PM
Dîner
Dîner
7:30 PM - 9:30 PM
Room: 49 grande rue de Nazareth
Friday, October 23, 2015
9:00 AM
Factorization homology and applications III: Applications to E_n-algebras
-
Grégory Ginot
(
Paris 6
)
Factorization homology and applications III: Applications to E_n-algebras
(TopAlg)
Grégory Ginot
(
Paris 6
)
9:00 AM - 10:15 AM
Room: Amphi Schwartz, bat. 1R3
Lecture III: we will review some applications of factorization homology as an invariant of little n-cubes algebras. In particular, we will give an overview of Bar constructions for little n-cubes algebras and state non-abelian Poincaré duality, which computes factorization homology with values in iterated loop spaces.
10:15 AM
Café
Café
10:15 AM - 10:40 AM
Room: Amphi Schwartz, bat. 1R3
10:40 AM
Catégories à dualité
-
Ramzi Ksouri
(
Sousse
)
Catégories à dualité
(TopAlg)
Ramzi Ksouri
(
Sousse
)
10:40 AM - 11:30 AM
Room: Amphi Schwartz, bat. 1R3
Nous définissons la notion de foncteur à dualité dans la catégorie $\mathcal{C}\mathrm{-mod}$ des foncteurs covariants d'une catégorie $\mathcal{C}$ vers $k\mathrm{-mod}$. On donne une caractérisation pour l'existence d'un foncteur à dualité. Nous illustrons cette notion par des exemples.
11:40 AM
(Op)lax natural transformations for higher categories, relative quantum field theories, and the "even higher" Morita category
-
Claudia Scheimbauer
(
Max Planck Institute for Mathematics, Bonn
)
(Op)lax natural transformations for higher categories, relative quantum field theories, and the "even higher" Morita category
(TopAlg)
Claudia Scheimbauer
(
Max Planck Institute for Mathematics, Bonn
)
11:40 AM - 12:30 PM
Room: Amphi Schwartz, bat. 1R3
A relative (also called twisted) quantum field theory should be some transformation between quantum field theories, which themselves are symmetric monoidal functors out of a space-time category. In examples, the notion of natural transformation turns out to be too strong, making it necessary to relax it. In joint work with Theo Johson-Freyd we provide a framework for both lax and oplax transformations and their higher analogs, known as transfors, between strong $(\infty, n)$-functors. It is given by a double $(\infty,n)$-category built out of the target $(\infty, n)$-category that we call its (op)lax square, which governs the desired diagrammatics. Lax or oplax transfors then are functors into parts of the oplax square. Finally, I will explain how to use the (op)lax square to extend the construction of the higher Morita category of $E_d$-algebras in an $(\infty,n)$-category $\mathcal C$ to an even higher level using the higher morphisms of $\mathcal C$.
12:40 PM
Déjeuner
Déjeuner
12:40 PM - 2:00 PM
Room: Amphi Schwartz, bat. 1R3
2:00 PM
Motivic realizations of categories
-
Bertrand Toën
(
CNRS et Toulouse
)
Motivic realizations of categories
(TopAlg)
Bertrand Toën
(
CNRS et Toulouse
)
2:00 PM - 2:50 PM
Room: Amphi Schwartz, bat. 1R3
This is a report on a work in progress with Robalo and Vezzosi. I will present the construction of a motivic realization of (dg-)categories over base of arbitrary characteristics, based on some previous work by A. Blanc. This will be used in order to define various realizations of categories, l-adic, de Rham, Betti etc, recovering the usual realizations when applied to the derived category of an algebraic variety. As a consequence I will present an extension of p-adic Hodge theory to the non-commutative setting, as well as a new relations between vanishing cycles and categories of matrix factorizations in positive and mixed characteristics.