On the deformation theory of dg-categories

Anthony Blanc
MPIM Bonn

October 21st, 2015

Anthony Blanc (MPIM Bonn) October 21st, 2015 1/20



© Introduction

© Formal moduli problems

© Deformation functor of a dg-category

Anthony Blanc (MPIM Bonn) October 21st, 2015



Let k be a field and By an associative k-algebra.

Anthony Blanc (MPIM Bonn) October 21st, 2015



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Anthony Blanc (MPIM Bonn) October 21st, 2015



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(£?).

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B.

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B. The product on B is
given by:

bx b = bb' + ¢(b, b').

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B. The product on B is
given by:

bx b = bb' + ¢(b, b').

Associativity of  implies ¢ € Z?(Bp).

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B. The product on B is
given by:

bx b = bb' + ¢(b, b').

Associativity of  implies ¢ € Z?(Bp).

Two deformations B, and B. are isomorphic iff ¢ — ¢’ is a Hochschild coboundary.

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B. The product on B is
given by:

bx b = bb' + ¢(b, b').

Associativity of  implies ¢ € Z?(Bp).
Two deformations B, and B. are isomorphic iff ¢ — ¢’ is a Hochschild coboundary.

Defg™ : Arty — Gpd

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B. The product on B is
given by:

bxb = bb' + ¢(b, b).

Associativity of  implies ¢ € Z?(Bp).
Two deformations B, and B. are isomorphic iff ¢ — ¢’ is a Hochschild coboundary.

Defg™ : Arty — Gpd

Defé:fs(A) = {A — deformations of By}

Anthony Blanc (MPIM Bonn) October 21st, 2015 3/20



Let k be a field and By an associative k-algebra.
Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of By is an associative A-algebra Ba such that there exists an
isomorphism Ba ®4 k ~ By.

Let A = k[e] := k[t]/(t?). Let B. be a k[e]-deformation of B. The product on B is
given by:
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Two deformations B, and B. are isomorphic iff ¢ — ¢’ is a Hochschild coboundary.
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Suppose dimi(Bo) < oo; let By € moDef4*(k[e]), then there exists a o(B1) € HH*(Bo)
which verifies the property:

o(B1)=0 & There exists B, € moDefg*(k[t]/(t)) such

that Bz ®k[t]/(t3) k[t]/(t ) ~ Bl.
In fact:

moDefs (k @ k[1]) ~ HH?(Bo).

where k @ k[1] is the trivial square zero extension and is a commutative dg-algebra.

Key idea of Derived Deformation Theory

Enlarge Arti, to dgArt, commutative artinian connective dg-algebras

A commutative dg-algebra A is artinian if
o H°(A) is a local ring.
e H'(A)=0,Vi>O0.
o dim(H'(A)) < .
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dg — Alg(A) =the co-category of A-dg-algebras up to quasi-isomorphism.

Definition

Def;)ga D dgArtk — S

Def$e(A) := dg — Alg(A)~ X gg—ag(iy~ {Bo}

K[e]/(£7) —— k[8]/(%)

|

k——— k@ k[1]

is a pullback diagram in dgArt,. We can prove that if dimi(By) < oo the diagram
Def 8 (K[t]/(£)) —— Def& (K[¢el/(£2))
J{ I’obsnuccion”
* = Defg (k) —— Def8(k & k[1])

is a pullback in spaces.
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Let k be a field of characteristic zero.
Definition (Lurie, DAGX)

A formal moduli problem F over k is an co-functor

F : dgArty — S

which verifies the two conditions:
Q F(k) ~ .
@ For every pullback square B —— k in dgArt, the square

.

A— k& K[n]

F(B) — F(k) ~

|

F(A) —— F(k @ k[n])

is a pullback in S.

v

We denote by FMPy the oco-category of fmps over k. And by PFMP) the oco-category of

oo-functors dgArty — S which verifies only conditions 1.
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Examples of fmps:
@ The formal completion at a point of an Artin stack is an fmp.
o If By is a proper k-dg-algebra, then Def;)ga is an fmp.

o If Xo is a smooth projective scheme over k. Then Defy, is an fmp.
moDefx, (k[e]) ~ H'(Tx,).

o If V is an algebraic vector bundle over an algebraic variety X. Then Defy is an fmp.
moDefy (k[e]) ~ H*(X, End(V)).

Property

The inclusion oco-functor FMP, < PFMP, commutes with limits. It has a left adjoint
denoted by
(—)/\ : PEMP, — FMPy

F+— F"

For every F € PFMPy we therefore have a canonical map F — F”.
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A formal moduli problem has a tangent spectrum. The diagrams

k@ kln—1] — k

8 1

k ——— k @ k[n]
are pullback squares in dgArtx. For every formal moduli problem F, we have
F(k ® k[n —1]) ~ QF (k @ k[n]).
Hence a spectrum Tr with (T¢), = F(k @ k[n]).

The loop space functor is
Q : PFMP, — PFMPy

with Q(F)(A) := Q(F(A)) the space of loops at the point * ~ F(k) — F(A). We have
Tar >~ QTF ~ T/:[—].]7

hence, informally, the latter is a dg-Lie-algebra.
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Theorem (Lurie, Hinich)

If char(k) = 0, there exists an co-functor
FMPk — dgLiek

given by F — Tg[—1], which is an equivalence.
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Theorem (Lurie, Hinich)

If char(k) = 0, there exists an co-functor
FMPk — dgLiek

given by F — Tg[—1], which is an equivalence.

In the examples:
® By a finite dimensional algebra/k. T, _.ae[—1] = HH®*(Bo)[1].
Bo
@ Xo smooth projective scheme/k. Tpep, [—1] = Tx,[—1].

@ V vector bundle on an algebraic variety X/k. Tper, [—1] ~ RI(X, End(V)).

The right adjoint W of the equivalence is given by
V(L)(A) = Mapagtie, (D(A), L)

where © : (CAlg;"¢)® — dgLiey is the Kozsul duality functor.
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cocontinuous dg-functors.

cof

The objects of Dg(k) are dg-categories of the form A= RModgop 4 for A a small
k-dg-category. Equivalences are quasi-equivalences.

The morphisms in Dg® (k) are given by Morita bimodules.
RHom (T, T') ~ T®®&,T" (Toén)

Let To € Dg(k).

Definition

Defr, : dgArty —> S
DefTU(A) = DgCC(A): X Dgee (k)™ {To}

An point in Defr,(A) corresponds to a pair (Ta, u) with Ta € Dg(A) and
u: Ta®@ak ~ Ty a Morita equivalence.
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For many interesting dg-categories To, the functor Defr, is not a formal moduli problem.

The map F — F” for F = Defr, gives a map
© : Defr, — Defr,
Hence a map on the tangents
Qo : moDefr, (k[e]) — moDefr, (k[e])
We can show moDef7) (k[e]) ~ HH?(To).

Typical example

To= k[u/,u\—l] with deg(u) =2 and d = 0. HH?(To) ~ k generated by u. Keller—Lowen
showed that u ¢ Im(©yq).

v

Theorem (Lurie)
Let To € Dg(k). Suppose the following conditions holds:
@ For every compact objects E, F € To, Exty (E,F) =0, Vn>> 0.

o There exists a set of compact objects {En}o of To with Ext7 (Ex, Ex) =0, Vn > 2,
Yo and which generates Ty under colimits.

v

Anthony Blanc (MPIM Bonn) October 21st, 2015 11 /20



For many interesting dg-categories To, the functor Defr, is not a formal moduli problem.

The map F — F” for F = Defr, gives a map
© : Defr, — Defr,
Hence a map on the tangents
Qo : moDefr, (k[e]) — moDefr, (k[e])
We can show moDef7) (k[e]) ~ HH?(To).

Typical example

To= k[u/,u\—l] with deg(u) =2 and d = 0. HH?(To) ~ k generated by u. Keller—Lowen
showed that u ¢ Im(©yq).

Theorem (Lurie)
Let To € Dg(k). Suppose the following conditions holds:
@ For every compact objects E, F € To, Exty (E,F) =0, Vn>> 0.

o There exists a set of compact objects {En}o of To with Ext7 (Ex, Ex) =0, Vn > 2,
Yo and which generates Ty under colimits.

Then Deft, is a formal moduli problem.
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o What is Def7, ?

@ Is the map © : Defr, — DefTA‘J an equivalence for a larger nice class dg-categories
To ? Or on specific algebras e.g. A = k[t].
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@ Is the map © : Defr, — DefTA‘J an equivalence for a larger nice class dg-categories
To ? Or on specific algebras e.g. A = k[t].

Define Defr,(k[t]) := lim;>1Defr,(k[t]/(t')) and Deff,(k[t]) := lim;>1Def7; (k[t]/(t)).
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o What is Defy, ?

@ Is the map © : Defr, — DefTA0 an equivalence for a larger nice class dg-categories
To ? Or on specific algebras e.g. A = k[t].

Define Defr,(k[t]) := lim;>1Defr,(k[t]/(t')) and Deff,(k[t]) := lim;>1Def7; (k[t]/(t)).

The following is our main result, which has benefited from discussions with B. Toén (see
his 2014 ICM adress).

Theorem (B.—Pandit)

Let To € Dg(k) be a smooth proper dg-category. For every {a;}; € Deft, (k[t]) there
exists a proper dg-algebra B over k[t] such that

Defg® (k[t]) — Defr, (k[t])

maps B to {a;}i.
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o What is Defy, ?

@ Is the map © : Defr, — DefTA0 an equivalence for a larger nice class dg-categories
To ? Or on specific algebras e.g. A = k[t].

Define Defr,(k[t]) := lim;>1Defr,(k[t]/(t')) and Deff,(k[t]) := lim;>1Def7; (k[t]/(t)).

The following is our main result, which has benefited from discussions with B. Toén (see
his 2014 ICM adress).

Theorem (B.—Pandit)

Let To € Dg(k) be a smooth proper dg-category. For every {a;}; € Deft, (k[t]) there
exists a proper dg-algebra B over k[t] such that

Defg® (k[t]) — Defr, (k[t])

maps B to {a;}i.

Let's now review the necessary tools for proving this.
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Let F be a pre-fmp which is not too bad, then Q"F is eventually an fmp for big enough n.
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Slogan

Let F be a pre-fmp which is not too bad, then Q"F is eventually an fmp for big enough n.

Lemma-Definition (Lurie)

Let F be a pre-fmp over k. Then the following are equivalent:
Q@ Q"F is an fmp.
@ For all pullback squares B — k in dgArti, the map

1 1

A — k @ k[n]
F(B) — F(A) X F(k@k[n]) * 1S (n — 2)-truncated.
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Slogan

Let F be a pre-fmp which is not too bad, then Q"F is eventually an fmp for big enough n.

Lemma-Definition (Lurie)

Let F be a pre-fmp over k. Then the following are equivalent:
Q@ Q"F is an fmp.
@ For all pullback squares B — k in dgArti, the map

1 1

A — k @ k[n]
F(B) — F(A) X F(k@k[n]) * 1S (n — 2)-truncated.
@ The map F(A) — F"(A) is (n — 2)-truncated for all A € dgArty.

We call such a fmp n-proximate.

\
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Let Ey € To be an object. Set Ta := To@wa.
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Let Ey € To be an object. Set Ta := TochZ. The deformation functor of Ey in Ty is
Defg, : dgArty — S
DefEO(A) = OO(TA): XOO(TO): {Eo}
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Let Ey € To be an object. Set Ta := TochZ. The deformation functor of Ey in Ty is
Defg, : dgArty — S
DefEO(A) = OO(TA): XOO(TO): {Eo}

There exists examples of To and Eq such that Defg, is not an fmp.
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There exists examples of To and Ep such that Defg, is not an fmp. However if To has a
left complete t-structure and Eo is connective, then Defg, is an fmp.
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Let Ey € To be an object. Set Ta := To@)k/a. The deformation functor of Ey in Ty is
Defg, : dgArty — S
DefEO(A) = OO(TA): Xoo(To): {Eo}

There exists examples of To and Ep such that Defg, is not an fmp. However if To has a
left complete t-structure and Eo is connective, then Defg, is an fmp.

QDefEO(A) ~ AUtoo(TA)(EO Rk A)

It is known that QDefg, is an fmp.

Proposition (Lurie, Toén-Vaquié)

The pre-fmp Defg, is 1-proximate.
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Let Ey € To be an object. Set Ta := TochZ. The deformation functor of Ey in Ty is
Defg, : dgArty — S
DefEO(A) = OO(TA): XOO(TO): {Eo}

There exists examples of To and Ep such that Defg, is not an fmp. However if To has a
left complete t-structure and Eo is connective, then Defg, is an fmp.

QDefEO(A) ~ AUtoo(TA)(EO Rk A)

It is known that QDefg, is an fmp.

Proposition (Lurie, Toén-Vaquié)

The pre-fmp Defg, is 1-proximate.

When Ty is smooth proper, we even have a locally geometric stack of objects in Ty
(Toén-Vaquié).
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QDefTo (A) ~ AUthcc(A)(TA) XAuthcc(k)(Tk) {idTD}

~ RMod ™= X v~ {idr }
RM »= 0
Ty @k To®kA OdT('):p®kTO
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QDefTo (A) ~ AUthcc(A)(TA) XAuthcc(k)(Tk) {idTD}

~ RMod ™= X v~ {idr }
RM »= 0
Ty @k To®kA OdT('):p‘X’kTO

Proposition (Lurie)

The pre-fmp QDef7, is 1-proximate, hence Defr, is 2-proximate.
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S-ZDe)"—'r(J (A) ~ AUthcc(A)(TA) XAuthcc(k)(Tk) {idTD}

~ RMod ™= X v~ {idr }
RM »= 0
Ty @k To®kA OdT('):p®kTO

Proposition (Lurie)

The pre-fmp QDef7, is 1-proximate, hence Defr, is 2-proximate.

2 . .
Q° Defr,(A) ~ AutAuthCC(A)(TA)(IdTA) XAutAuthcc(k)(idTo) {ld;dTo}

TQzDef% ~ TQZDefTO ~ EndEnd(To)(idTg) ~ HH'(TQ)

The map Defr,(A) — Deff; (A) is O-truncated, i.e.

@ is an isomorphism on 7; for all i > 2.

@ is injective on ;.
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The n-proximate property is related to the property of being defined on E,-algebras, and
to a description in terms of Koszul duality of E,-algebras, where eventually n = co.
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The n-proximate property is related to the property of being defined on E,-algebras, and
to a description in terms of Koszul duality of E,-algebras, where eventually n = co.

A,

Proposition (Lurie)

@ Defg, is an E;-fmp. There exists an equivalence
Deff)(A) =~ Mape, —aig, (9™ (A), Endr, (Eo)).
@ Deft, is an Ex-fmp. There exists an equivalence

Deff (A) = Mape, - ag, (D (A), HH*(To)).

Where D is the Koszul duality functor for E,-algebras.
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The n-proximate property is related to the property of being defined on E,-algebras, and

to a description in terms of Koszul duality of E,-algebras, where eventually n = co.
v

Proposition (Lurie)

@ Defg, is an Ei-fmp. There exists an equivalence

Defiy (A) =~ Mape, —ag, (D" (A), Endr, (Eo)).
@ Deft, is an Ex-fmp. There exists an equivalence

Deffy(A) =~ Mape, - ag, (9P (A), HH* (To)).

Where D is the Koszul duality functor for E,-algebras.

v

Corollary

Defry(A) =~ Mapc,.o (RMod3, o~ End®(To))

~ {D@(A)-linear structures on To}
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Deff,(A) = Mape, — g, (D™ (A), Endr, (Eo))
~ (LModga)(A)(oo(To)): X oo(Ty) {E0}
~ (RModa(00(T0))™ Xoo(r) {Eo}

Anthony Blanc (MPIM Bonn) October 21st, 2015 17 /20



Deff,(A) = Mape, — g, (D™ (A), Endr, (Eo))
~ (LModga)(A)(oo(To)): X oo(Ty) {E0}
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If Ais an Ej-algebra, RMod} := Ind(RMod$") where an A-module is small if its
underlying k-module has finite dimensional total cohomology.
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Deff,(A) = Mape, — g, (D™ (A), Endr, (Eo))
~ (LModga)(A)(oo(To)): X oo(Ty) {E0}
~ (RModa(00(T0))™ Xoo(r) {Eo}

If Ais an Ej-algebra, RMod} := Ind(RMod$") where an A-module is small if its
underlying k-module has finite dimensional total cohomology.

Let Aut, := QDefr, be the deformation functor of idr, in RModrerg, 7.

The formal moduli problem Aut? is equivalent to

[N ! inv,~ g
Auty : A (RModrorg, 70, 4) X (RModl gy = {idry }
0
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FMP, ¢ FMPY ¢ FMP®) c ... c PFMP;

Anthony Blanc (MPIM Bonn) October 21st, 2015 18 /20



FMP, ¢ FMPY ¢ FMP®) c ... c PFMP;

For every integer n,
Q" : FMP") — E, — Gp(FMPy)

Anthony Blanc (MPIM Bonn) October 21st, 2015 18 /20



FMP, ¢ FMPY ¢ FMP®) c ... c PFMP;

For every integer n,
Q" : FMP") — E, — Gp(FMPy)

Proposition

Let F be an n-proximate formal moduli problem. Then we have an equivalence:

F"(A) = Mape, - cp(rmp,) (2" hspec(a), " F)
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FMP, ¢ FMPY ¢ FMP®) c ... c PFMP;

For every integer n,
Q" : FMP") — E, — Gp(FMPy)

Proposition

Let F be an n-proximate formal moduli problem. Then we have an equivalence:

F"(A) = Mape, - cp(rmp,) (2" hspec(a), " F)

This is based on the

Proposition

The functor Q" restricted to FMPy is an equivalence.

Q)

|FMPy : FMP, — E, — Gp(FMPk)
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Proposition

Let To € Dg“(k), there exists an equivalence:

Deﬁ%(A) ~ MapEl—GP(FMPk)(QhSPeC(A)7Aut!-ro).
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Let To € Dg“(k), there exists an equivalence:

Deﬁ%(A) ~ MapEl—GP(FMPk)(QhSPeC(A)7Aut!-ro).

When Ty is smooth and proper, the canonical map Aut,, — Aut!T0 is an equivalence,
because Auty, is the restriction to artinian algebras of a geometric stack.
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Let To € Dg(k), there exists an equivalence:

Def7,(A) ~ Mape, _ co(rmp,) (Qhspec(a), Aut'y, ).

v

When Ty is smooth and proper, the canonical map Aut,, — Aut!T0 is an equivalence,
because Auty, is the restriction to artinian algebras of a geometric stack.

v

Theorem (B.—Pandit)

Let To be a smooth proper dg-category in Dg(k). For every {ai}; € Deff,(k[t]) there
exists a proper dg-algebra B over k[t] such that

Defge(k[t]) — Deff, (k[t])

maps B to {«;}i.
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Let To € Dg«(k) be a smooth proper dg-category. Then the map
Defr,(k[t]) — Defz,(k[t]) is an equivalence. In other word, the naive definition of
deformation works out.
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