On the deformation theory of dg-categories

Anthony Blanc

MPIM Bonn

October 21st, 2015

Anthony Blanc (MPIM Bonn)

On the deformation theory of dg-categories

October 21st, 2015 1 / 20

・ロト ・回ト ・ヨト

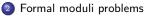


Image: A matching of the second se

・ロト ・回ト ・ヨト ・

Let A be a commutative local artinian k-algebra with residue field k.

・ロト ・回ト ・ヨト ・

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Image: A math a math

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$.

・ロト ・回ト ・ ヨト

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B.

・ロト ・回ト ・ ヨト

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B. The product on B_{ϵ} is given by:

 $b \star b' = bb' + \phi(b, b').$

・ロト ・回ト ・ヨト

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B. The product on B_{ϵ} is given by:

$$b \star b' = bb' + \phi(b, b').$$

Associativity of \star implies $\phi \in Z^2(B_0)$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B. The product on B_{ϵ} is given by:

$$b \star b' = bb' + \phi(b, b').$$

Associativity of \star implies $\phi \in Z^2(B_0)$.

Two deformations B_{ϵ} and B'_{ϵ} are isomorphic iff $\phi - \phi'$ is a Hochschild coboundary.

イロト イヨト イヨト イヨ

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B. The product on B_{ϵ} is given by:

$$b \star b' = bb' + \phi(b, b').$$

Associativity of \star implies $\phi \in Z^2(B_0)$.

Two deformations B_{ϵ} and B'_{ϵ} are isomorphic iff $\phi - \phi'$ is a Hochschild coboundary.

$$Def_{B_0}^{Ass} : Art_k \longrightarrow Gpd$$

イロト イヨト イヨト イヨ

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B. The product on B_{ϵ} is given by:

$$b \star b' = bb' + \phi(b, b').$$

Associativity of \star implies $\phi \in Z^2(B_0)$.

Two deformations B_{ϵ} and B'_{ϵ} are isomorphic iff $\phi - \phi'$ is a Hochschild coboundary.

$$Def_{B_0}^{Ass} : Art_k \longrightarrow Gpd$$

 $Def_{B_0}^{Ass}(A) = \{A - \text{deformations of } B_0\}$

イロト イヨト イヨト イヨト

Let A be a commutative local artinian k-algebra with residue field k.

Definition

An A-deformation of B_0 is an associative A-algebra B_A such that there exists an isomorphism $B_A \otimes_A k \simeq B_0$.

Let $A = k[\epsilon] := k[t]/(t^2)$. Let B_{ϵ} be a $k[\epsilon]$ -deformation of B. The product on B_{ϵ} is given by:

$$b \star b' = bb' + \phi(b, b').$$

Associativity of \star implies $\phi \in Z^2(B_0)$.

Two deformations B_{ϵ} and B'_{ϵ} are isomorphic iff $\phi - \phi'$ is a Hochschild coboundary.

$$Def_{B_0}^{Ass}: Art_k \longrightarrow Gpd$$

 $Def_{B_0}^{Ass}(A) = \{A - \text{deformations of } B_0\}$

$$\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0).$$

イロト イヨト イヨト イヨト

 $Def_{B_0}^{Ass} : Art_k \longrightarrow Gpd$

▲口→ ▲圖→ ▲注→ ▲注→

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0),$

・ロト ・四ト ・ヨト ・ヨト

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0), \qquad \pi_1(Def_{B_0}(k[\epsilon]), B_\epsilon) \simeq HH^1(B_0).$

・ロト ・回ト ・ヨト ・ヨト

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0), \qquad \pi_1(Def_{B_0}(k[\epsilon]), B_\epsilon) \simeq HH^1(B_0).$

Suppose $dim_k(B_0) < \infty$; let $B_1 \in \pi_0 Def_{B_0}^{Ass}(k[\epsilon])$, then there exists a $o(B_1) \in HH^3(B_0)$ which verifies the property:

<ロト </p>

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0), \qquad \pi_1(Def_{B_0}(k[\epsilon]), B_\epsilon) \simeq HH^1(B_0).$

Suppose $dim_k(B_0) < \infty$; let $B_1 \in \pi_0 Def_{B_0}^{Ass}(k[\epsilon])$, then there exists a $o(B_1) \in HH^3(B_0)$ which verifies the property:

$$o(B_1) = 0 \qquad \Leftrightarrow \qquad \text{There exists } B_2 \in \pi_0 Def_{B_0}^{A_0}(k[t]/(t^3)) \text{ such } \\ \text{that } B_2 \otimes_{k[t]/(t^3)} k[t]/(t^2) \simeq B_1.$$

イロト イ団ト イヨト イヨト

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0), \qquad \pi_1(Def_{B_0}(k[\epsilon]), B_\epsilon) \simeq HH^1(B_0).$

Suppose $dim_k(B_0) < \infty$; let $B_1 \in \pi_0 Def_{B_0}^{Ass}(k[\epsilon])$, then there exists a $o(B_1) \in HH^3(B_0)$ which verifies the property:

$$o(B_1) = 0 \qquad \Leftrightarrow \qquad \text{There exists } B_2 \in \pi_0 Def_{B_0}^{Ass}(k[t]/(t^3)) \text{ such that } B_2 \otimes_{k[t]/(t^3)} k[t]/(t^2) \simeq B_1.$$

$$\pi_0 Def_{B_0}^{Ass}(k \oplus k[1]) \simeq HH^3(B_0).$$

where $k \oplus k[1]$ is the trivial square zero extension and is a commutative dg-algebra.

(日) (同) (三) (三)

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0), \qquad \pi_1(Def_{B_0}(k[\epsilon]), B_\epsilon) \simeq HH^1(B_0).$

Suppose $dim_k(B_0) < \infty$; let $B_1 \in \pi_0 Def_{B_0}^{Ass}(k[\epsilon])$, then there exists a $o(B_1) \in HH^3(B_0)$ which verifies the property:

$$o(B_1) = 0 \qquad \Leftrightarrow \qquad \text{There exists } B_2 \in \pi_0 Def_{B_0}^{Ass}(k[t]/(t^3)) \text{ such that } B_2 \otimes_{k[t]/(t^3)} k[t]/(t^2) \simeq B_1.$$

$$\pi_0 Def_{B_0}^{Ass}(k \oplus k[1]) \simeq HH^3(B_0).$$

where $k \oplus k[1]$ is the trivial square zero extension and is a commutative dg-algebra.

Key idea of Derived Deformation Theory

Enlarge Art_k to $dgArt_k$ commutative artinian connective dg-algebras.

(日) (同) (三) (三)

 $\pi_0 Def_{B_0}^{Ass}(k[\epsilon]) \simeq HH^2(B_0), \qquad \pi_1(Def_{B_0}(k[\epsilon]), B_\epsilon) \simeq HH^1(B_0).$

Suppose $dim_k(B_0) < \infty$; let $B_1 \in \pi_0 Def_{B_0}^{Ass}(k[\epsilon])$, then there exists a $o(B_1) \in HH^3(B_0)$ which verifies the property:

$$o(B_1) = 0 \qquad \Leftrightarrow \qquad \text{There exists } B_2 \in \pi_0 Def_{B_0}^{Ass}(k[t]/(t^3)) \text{ such that } B_2 \otimes_{k[t]/(t^3)} k[t]/(t^2) \simeq B_1.$$

$$\pi_0 Def_{B_0}^{Ass}(k \oplus k[1]) \simeq HH^3(B_0).$$

where $k \oplus k[1]$ is the trivial square zero extension and is a commutative dg-algebra.

Key idea of Derived Deformation Theory

Enlarge Art_k to $dgArt_k$ commutative artinian connective dg-algebras.

A commutative dg-algebra A is artinian if

- $H^0(A)$ is a local ring.
- $H^i(A) = 0, \forall i \gg 0.$
- $dim_k(H^i(A)) < \infty$.

(日) (周) (三) (三)

メロト メポト メヨト メヨト

If A is a commutative dg-algebra/k. dg - Alg(A) =the ∞ -category of A-dg-algebras up to quasi-isomorphism.

・ロト ・回ト ・ヨト ・

dg - Alg(A) = the ∞ -category of A-dg-algebras up to quasi-isomorphism.

Definition

$$Def_{B_0}^{dga}: dgArt_k \longrightarrow S$$

$$Def_{B_0}^{dga}(A) := dg - Alg(A)^{\simeq} imes_{dg-Alg(k)^{\simeq}} \{B_0\}$$

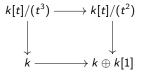
・ロト ・ 日 ・ ・ 日 ト

dg - Alg(A) = the ∞ -category of A-dg-algebras up to quasi-isomorphism.

Definition

$$Def_{B_0}^{dga}: dgArt_k \longrightarrow S$$

$$Def_{B_0}^{dga}(A) := dg - Alg(A)^{\simeq} \times_{dg - Alg(k)^{\simeq}} \{B_0\}$$



is a pullback diagram in $dgArt_k$.

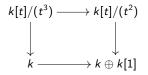
イロン イ部ン イヨン イヨ

dg - Alg(A) = the ∞ -category of A-dg-algebras up to quasi-isomorphism.

- J - - - -

Definition

$$egin{aligned} & Def_{B_0}^{dga}: dgArt_k \longrightarrow \mathcal{S} \ & Def_{B_0}^{dga}(A) := dg - Alg(A)^{\simeq} imes_{dg-Alg(k)^{\simeq}} \{B_0\} \end{aligned}$$



is a pullback diagram in $dgArt_k$. We can prove that if $dim_k(B_0) < \infty$ the diagram

is a pullback in spaces.

<ロ> (日) (日) (日) (日) (日)

メロト メポト メヨト メヨト

Definition (Lurie, DAGX)

A formal moduli problem F over k is an ∞ -functor

 $F : dgArt_k \longrightarrow S$

which verifies the two conditions:

*ロト *個ト *注ト *注

Definition (Lurie, DAGX)

A formal moduli problem F over k is an ∞ -functor

 $F : dgArt_k \longrightarrow S$

which verifies the two conditions:

• $F(k) \simeq *$.

・ロト ・回ト ・ヨト ・ヨ

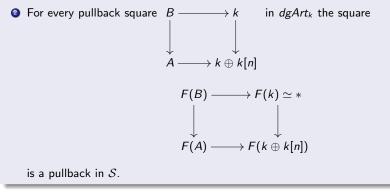
Definition (Lurie, DAGX)

A formal moduli problem F over k is an ∞ -functor

$$F: dgArt_k \longrightarrow S$$

which verifies the two conditions:

• $F(k) \simeq *$.



イロト イヨト イヨト イヨト

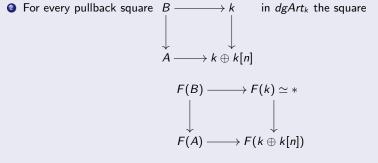
Definition (Lurie, DAGX)

A formal moduli problem F over k is an ∞ -functor

$$F: dgArt_k \longrightarrow S$$

which verifies the two conditions:

• $F(k) \simeq *$.



is a pullback in \mathcal{S} .

We denote by FMP_k the ∞ -category of fmps over k. And by $PFMP_k$ the ∞ -category of ∞ -functors $dgArt_k \longrightarrow S$ which verifies only conditions $1 < 0 > \langle B \rangle < B \rangle < B \rangle < B \rangle > \langle B$

Anthony Blanc (MPIM Bonn)

• The formal completion at a point of an Artin stack is an fmp.

・ロト ・日子・ ・ ヨト

- The formal completion at a point of an Artin stack is an fmp.
- If B_0 is a proper k-dg-algebra, then $Def_{B_0}^{dga}$ is an fmp.

- The formal completion at a point of an Artin stack is an fmp.
- If B_0 is a proper k-dg-algebra, then $Def_{B_0}^{dga}$ is an fmp.
- If X_0 is a smooth projective scheme over k. Then Def_{X_0} is an fmp. $\pi_0 Def_{X_0}(k[\epsilon]) \simeq H^1(T_{X_0})$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The formal completion at a point of an Artin stack is an fmp.
- If B_0 is a proper k-dg-algebra, then $Def_{B_0}^{dga}$ is an fmp.
- If X_0 is a smooth projective scheme over k. Then Def_{X_0} is an fmp. $\pi_0 Def_{X_0}(k[\epsilon]) \simeq H^1(T_{X_0})$.
- If V is an algebraic vector bundle over an algebraic variety X. Then Def_V is an fmp. $\pi_0 Def_V(k[\epsilon]) \simeq H^1(X, End(V)).$

- The formal completion at a point of an Artin stack is an fmp.
- If B_0 is a proper k-dg-algebra, then $Def_{B_0}^{dga}$ is an fmp.
- If X_0 is a smooth projective scheme over k. Then Def_{X_0} is an fmp. $\pi_0 Def_{X_0}(k[\epsilon]) \simeq H^1(T_{X_0})$.
- If V is an algebraic vector bundle over an algebraic variety X. Then Def_V is an fmp. $\pi_0 Def_V(k[\epsilon]) \simeq H^1(X, End(V)).$

Property

The inclusion ∞ -functor $FMP_k \hookrightarrow PFMP_k$ commutes with limits. It has a left adjoint denoted by

$$(-)^{\wedge}: PFMP_k \longrightarrow FMP_k$$

$$F \longmapsto F^{\wedge}$$

For every $F \in PFMP_k$ we therefore have a canonical map $F \longrightarrow F^{\wedge}$.

<ロト < 回 > < 回 > < 回 > < 回 >

A formal moduli problem has a tangent spectrum.

メロト メポト メヨト メヨト

$$\begin{array}{c} k \oplus k[n-1] \longrightarrow k \\ \downarrow \qquad \qquad \downarrow \\ k \longrightarrow k \oplus k[n] \end{array}$$

are pullback squares in $dgArt_k$.

$$\begin{array}{c} k \oplus k[n-1] \longrightarrow k \\ \downarrow \qquad \qquad \downarrow \\ k \longrightarrow k \oplus k[n] \end{array}$$

are pullback squares in $dgArt_k$. For every formal moduli problem F, we have

$$F(k \oplus k[n-1]) \simeq \Omega F(k \oplus k[n]).$$

$$\begin{array}{c} k \oplus k[n-1] \longrightarrow k \\ \downarrow \qquad \qquad \downarrow \\ k \longrightarrow k \oplus k[n] \end{array}$$

are pullback squares in $dgArt_k$. For every formal moduli problem F, we have

$$F(k \oplus k[n-1]) \simeq \Omega F(k \oplus k[n]).$$

Hence a spectrum T_F with $(T_F)_n = F(k \oplus k[n])$.

$$\begin{array}{c} k \oplus k[n-1] \longrightarrow k \\ \downarrow \qquad \qquad \downarrow \\ k \longrightarrow k \oplus k[n] \end{array}$$

are pullback squares in $dgArt_k$. For every formal moduli problem F, we have

$$F(k \oplus k[n-1]) \simeq \Omega F(k \oplus k[n]).$$

Hence a spectrum T_F with $(T_F)_n = F(k \oplus k[n])$.

The loop space functor is

$$\Omega: PFMP_k \longrightarrow PFMP_k$$

with $\Omega(F)(A) := \Omega(F(A))$ the space of loops at the point $* \simeq F(k) \longrightarrow F(A)$.

イロト イヨト イヨト イヨト

$$\begin{array}{c} k \oplus k[n-1] \longrightarrow k \\ \downarrow \qquad \qquad \downarrow \\ k \longrightarrow k \oplus k[n] \end{array}$$

are pullback squares in $dgArt_k$. For every formal moduli problem F, we have

$$F(k \oplus k[n-1]) \simeq \Omega F(k \oplus k[n]).$$

Hence a spectrum T_F with $(T_F)_n = F(k \oplus k[n])$.

The loop space functor is

$$\Omega: PFMP_k \longrightarrow PFMP_k$$

with $\Omega(F)(A) := \Omega(F(A))$ the space of loops at the point $* \simeq F(k) \longrightarrow F(A)$. We have

$$T_{\Omega F} \simeq \Omega T_F \simeq T_F[-1],$$

hence, informally, the latter is a dg-Lie-algebra.

イロト イヨト イヨト イヨト

If char(k) = 0, there exists an ∞ -functor

$$FMP_k \longrightarrow dgLie_k$$

given by $F \mapsto T_F[-1]$, which is an equivalence.

メロト メタト メヨト メヨ

If char(k) = 0, there exists an ∞ -functor

$$FMP_k \longrightarrow dgLie_k$$

given by $F \mapsto T_F[-1]$, which is an equivalence.

In the examples:

• B_0 a finite dimensional algebra/k. $T_{Def_{B_0}^{dga}}[-1] \simeq HH^{\bullet}(B_0)[1].$

メロト メポト メヨト メヨ

If char(k) = 0, there exists an ∞ -functor

$$FMP_k \longrightarrow dgLie_k$$

given by $F \mapsto T_F[-1]$, which is an equivalence.

In the examples:

- B_0 a finite dimensional algebra/k. $T_{Def_{B_0}^{dga}}[-1] \simeq HH^{\bullet}(B_0)[1].$
- X_0 smooth projective scheme/k. $T_{Def_{X_0}}[-1] \simeq T_{X_0}[-1]$.

イロン イ部ン イヨン イヨ

If char(k) = 0, there exists an ∞ -functor

$$FMP_k \longrightarrow dgLie_k$$

given by $F \mapsto T_F[-1]$, which is an equivalence.

In the examples:

- B_0 a finite dimensional algebra/k. $T_{Def_{B_0}^{dga}}[-1] \simeq HH^{\bullet}(B_0)[1].$
- X_0 smooth projective scheme/k. $T_{Def_{X_0}}[-1] \simeq T_{X_0}[-1]$.
- V vector bundle on an algebraic variety X/k. T_{Def_V}[−1] ≃ ℝΓ(X, End(V)).

イロン イ部ン イヨン イヨ

If char(k) = 0, there exists an ∞ -functor

$$FMP_k \longrightarrow dgLie_k$$

given by $F \mapsto T_F[-1]$, which is an equivalence.

In the examples:

- B_0 a finite dimensional algebra/k. $T_{Def_{B_0}^{dga}}[-1] \simeq HH^{\bullet}(B_0)[1].$
- X_0 smooth projective scheme/k. $T_{Def_{X_0}}[-1] \simeq T_{X_0}[-1]$.
- V vector bundle on an algebraic variety X/k. T_{Def_V}[−1] ≃ ℝΓ(X, End(V)).

The right adjoint Ψ of the equivalence is given by

イロン イ部ン イヨン イヨ

If char(k) = 0, there exists an ∞ -functor

$$FMP_k \longrightarrow dgLie_k$$

given by $F \mapsto T_F[-1]$, which is an equivalence.

In the examples:

- B_0 a finite dimensional algebra/k. $T_{Def_{B_0}^{dga}}[-1] \simeq HH^{\bullet}(B_0)[1].$
- X_0 smooth projective scheme/k. $T_{Def_{X_0}}[-1] \simeq T_{X_0}[-1]$.
- V vector bundle on an algebraic variety X/k. T_{Def_V}[−1] ≃ ℝΓ(X, End(V)).

The right adjoint Ψ of the equivalence is given by

$$\Psi(L)(A) = Map_{dgLie_k}(\mathfrak{D}(A), L)$$

where $\mathfrak{D} : (CAlg_k^{aug})^{op} \longrightarrow dgLie_k$ is the Kozsul duality functor.

イロト イヨト イヨト イヨト

The objects of $Dg^{cc}(k)$ are dg-categories of the form $\widehat{A} := \operatorname{RMod}_{A^{op}, dg}^{cof}$ for A a small k-dg-category. Equivalences are quasi-equivalences.

・ロト ・ 日下・ ・ ヨト・

The objects of $Dg^{cc}(k)$ are dg-categories of the form $\widehat{A} := \operatorname{RMod}_{A^{op}, dg}^{cof}$ for A a small k-dg-category. Equivalences are quasi-equivalences.

The morphisms in $Dg^{cc}(k)$ are given by Morita bimodules.

 $\mathbb{R}\underline{\operatorname{Hom}}_{c}(T,T') \simeq T^{op} \widehat{\otimes}_{k} T' \quad (\text{Toën})$

イロト イポト イヨト イヨト

The objects of $Dg^{cc}(k)$ are dg-categories of the form $\widehat{A} := \operatorname{RMod}_{A^{op}, dg}^{cof}$ for A a small k-dg-category. Equivalences are quasi-equivalences.

The morphisms in $Dg^{cc}(k)$ are given by Morita bimodules.

 $\mathbb{R}\underline{\operatorname{Hom}}_{c}(T,T') \simeq T^{op}\widehat{\otimes}_{k}T'$ (Toën)

Let $T_0 \in Dg^{cc}(k)$.

イロト イポト イヨト イヨト

The objects of $Dg^{cc}(k)$ are dg-categories of the form $\widehat{A} := \operatorname{RMod}_{A^{op}, dg}^{cof}$ for A a small k-dg-category. Equivalences are quasi-equivalences.

The morphisms in $Dg^{cc}(k)$ are given by Morita bimodules.

$$\mathbb{R}\underline{\operatorname{Hom}}_{c}(T,T') \simeq T^{op} \widehat{\otimes}_{k} T' \quad (\text{Toën})$$

Let $T_0 \in Dg^{cc}(k)$.

Definition $Def_{T_0}: dgArt_k \longrightarrow \hat{S}$ $Def_{T_0}(A) := Dg^{cc}(A)^{\simeq} imes_{Dg^{cc}(k)^{\simeq}} \{T_0\}$

イロト イポト イヨト イヨト

The objects of $Dg^{cc}(k)$ are dg-categories of the form $\widehat{A} := \operatorname{RMod}_{A^{op}, dg}^{cof}$ for A a small k-dg-category. Equivalences are quasi-equivalences.

The morphisms in $Dg^{cc}(k)$ are given by Morita bimodules.

$$\mathbb{R}\underline{\operatorname{Hom}}_{c}(T,T') \simeq T^{op} \widehat{\otimes}_{k} T' \quad (\text{Toën})$$

Let $T_0 \in Dg^{cc}(k)$.

Definition

$$Def_{T_0}: dgArt_k \longrightarrow \hat{S}$$

 $Def_{T_0}(A) := Dg^{cc}(A)^{\simeq} imes_{Dg^{cc}(k)^{\simeq}} \{T_0\}$

An point in $Def_{T_0}(A)$ corresponds to a pair (T_A, u) with $T_A \in Dg^{cc}(A)$ and $u : T_A \widehat{\otimes}_A \widehat{k} \simeq T_0$ a Morita equivalence.

・ロン ・四 と ・ ヨン ・ ヨン

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

イロト イヨト イヨト イヨ

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{\mathcal{T}_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{\mathcal{T}_0}^{\wedge}(k[\epsilon])$$

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{T_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{T_0}^{\wedge}(k[\epsilon])$$

We can show $\pi_0 Def_{T_0}^{\wedge}(k[\epsilon]) \simeq HH^2(T_0)$.

イロト イヨト イヨト イヨ

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{T_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{T_0}^{\wedge}(k[\epsilon])$$

We can show $\pi_0 Def_{T_0}^{\wedge}(k[\epsilon]) \simeq HH^2(T_0)$.

Typical example

 $T_0 = k[u, u^{-1}]$ with deg(u) = 2 and d = 0. $HH^2(T_0) \simeq k$ generated by u. Keller-Lowen showed that $u \notin Im(\Theta_0)$.

<ロト </p>

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{T_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{T_0}^{\wedge}(k[\epsilon])$$

We can show $\pi_0 Def_{T_0}^{\wedge}(k[\epsilon]) \simeq HH^2(T_0)$.

Typical example

 $T_0 = k \widehat{[u, u^{-1}]}$ with deg(u) = 2 and d = 0. $HH^2(T_0) \simeq k$ generated by u. Keller-Lowen showed that $u \notin Im(\Theta_0)$.

Theorem (Lurie)

Let $T_0 \in Dg^{cc}(k)$. Suppose the following conditions holds:

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{T_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{T_0}^{\wedge}(k[\epsilon])$$

We can show $\pi_0 Def^{\wedge}_{T_0}(k[\epsilon]) \simeq HH^2(T_0)$.

Typical example

 $T_0 = k[u, u^{-1}]$ with deg(u) = 2 and d = 0. $HH^2(T_0) \simeq k$ generated by u. Keller-Lowen showed that $u \notin Im(\Theta_0)$.

Theorem (Lurie)

Let $T_0 \in Dg^{cc}(k)$. Suppose the following conditions holds:

• For every compact objects $E, F \in T_0$, $Ext_{T_0}^n(E, F) = 0$, $\forall n \gg 0$.

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{T_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{T_0}^{\wedge}(k[\epsilon])$$

We can show $\pi_0 Def_{T_0}^{\wedge}(k[\epsilon]) \simeq HH^2(T_0)$.

Typical example

 $T_0 = k[u, u^{-1}]$ with deg(u) = 2 and d = 0. $HH^2(T_0) \simeq k$ generated by u. Keller-Lowen showed that $u \notin Im(\Theta_0)$.

Theorem (Lurie)

Let $T_0 \in Dg^{cc}(k)$. Suppose the following conditions holds:

- For every compact objects $E, F \in T_0$, $Ext_{T_0}^n(E, F) = 0$, $\forall n \gg 0$.
- There exists a set of compact objects $\{E_{\alpha}\}_{\alpha}$ of T_0 with $Ext_{T_0}^n(E_{\alpha}, E_{\alpha}) = 0$, $\forall n \ge 2$, $\forall \alpha$ and which generates T_0 under colimits.

For many interesting dg-categories T_0 , the functor Def_{T_0} is not a formal moduli problem.

The map $F \longrightarrow F^{\wedge}$ for $F = Def_{T_0}$ gives a map $\Theta : Def_{T_0} \longrightarrow Def_{T_0}^{\wedge}$

Hence a map on the tangents

$$\Theta_0: \pi_0 Def_{T_0}(k[\epsilon]) \longrightarrow \pi_0 Def_{T_0}^{\wedge}(k[\epsilon])$$

We can show $\pi_0 Def_{T_0}^{\wedge}(k[\epsilon]) \simeq HH^2(T_0)$.

Typical example

 $T_0 = k[u, u^{-1}]$ with deg(u) = 2 and d = 0. $HH^2(T_0) \simeq k$ generated by u. Keller-Lowen showed that $u \notin Im(\Theta_0)$.

Theorem (Lurie)

Let $T_0 \in Dg^{cc}(k)$. Suppose the following conditions holds:

- For every compact objects $E, F \in T_0$, $Ext_{T_0}^n(E, F) = 0$, $\forall n \gg 0$.
- There exists a set of compact objects $\{E_{\alpha}\}_{\alpha}$ of T_0 with $Ext_{T_0}^n(E_{\alpha}, E_{\alpha}) = 0$, $\forall n \ge 2$, $\forall \alpha$ and which generates T_0 under colimits.

Then Def_{T_0} is a formal moduli problem.

- What is $Def_{T_0}^{\wedge}$?
- Is the map Θ : Def_{T0} → Def[∧]_{T0} an equivalence for a larger nice class dg-categories T₀ ? Or on specific algebras e.g. A = k[[t]].

イロト イヨト イヨト イ

- What is $Def_{T_0}^{\wedge}$?
- Is the map Θ : Def_{T0} → Def_{T0}[∧] an equivalence for a larger nice class dg-categories T₀ ? Or on specific algebras e.g. A = k[[t]].

Define $Def_{T_0}(k\llbracket t \rrbracket) := \lim_{i \ge 1} Def_{T_0}(k\llbracket t]/(t^i))$ and $Def^{\wedge}_{T_0}(k\llbracket t \rrbracket) := \lim_{i \ge 1} Def^{\wedge}_{T_0}(k\llbracket t]/(t^i)).$

()

- What is $Def_{T_0}^{\wedge}$?
- Is the map Θ : Def_{T0} → Def_{T0}[∧] an equivalence for a larger nice class dg-categories T₀ ? Or on specific algebras e.g. A = k[[t]].

 $\text{Define } Def_{T_0}(k\llbracket t \rrbracket) := \textit{lim}_{i \geq 1} Def_{T_0}(k\llbracket t]/(t^i)) \text{ and } Def^{\wedge}_{T_0}(k\llbracket t \rrbracket) := \textit{lim}_{i \geq 1} Def^{\wedge}_{T_0}(k\llbracket t]/(t^i)).$

The following is our main result, which has benefited from discussions with B. Toën (see his 2014 ICM adress).

Theorem (B.–Pandit)

Let $T_0 \in Dg^{cc}(k)$ be a smooth proper dg-category. For every $\{\alpha_i\}_i \in Def^{\wedge}_{T_0}(k[t])$ there exists a proper dg-algebra B over k[t] such that

$$Def_{B_0}^{dga}(k\llbracket t
rbracket) \longrightarrow Def_{T_0}^{\wedge}(k\llbracket t
rbracket)$$

maps *B* to $\{\alpha_i\}_i$.

<ロ> (日) (日) (日) (日) (日)

- What is $Def_{T_0}^{\wedge}$?
- Is the map Θ : Def_{T0} → Def_{T0}[∧] an equivalence for a larger nice class dg-categories T₀ ? Or on specific algebras e.g. A = k[[t]].

 $\text{Define } Def_{T_0}(k\llbracket t \rrbracket) := \textit{lim}_{i \geq 1} Def_{T_0}(k\llbracket t]/(t^i)) \text{ and } Def^{\wedge}_{T_0}(k\llbracket t \rrbracket) := \textit{lim}_{i \geq 1} Def^{\wedge}_{T_0}(k\llbracket t]/(t^i)).$

The following is our main result, which has benefited from discussions with B. Toën (see his 2014 ICM adress).

Theorem (B.-Pandit)

Let $T_0 \in Dg^{cc}(k)$ be a smooth proper dg-category. For every $\{\alpha_i\}_i \in Def^{\wedge}_{T_0}(k[t])$ there exists a proper dg-algebra B over k[t] such that

$$Def_{B_0}^{dga}(k\llbracket t
rbracket) \longrightarrow Def_{\mathcal{T}_0}^{\wedge}(k\llbracket t
rbracket)$$

maps *B* to $\{\alpha_i\}_i$.

Let's now review the necessary tools for proving this.

イロン イヨン イヨン イヨン

Let F be a pre-fmp which is not too bad, then $\Omega^n F$ is eventually an fmp for big enough n.

Let F be a pre-fmp which is not too bad, then $\Omega^n F$ is eventually an fmp for big enough n.

Lemma–Definition (Lurie)

Let F be a pre-fmp over k. Then the following are equivalent:

1 $\Omega^n F$ is an fmp.

Let F be a pre-fmp which is not too bad, then $\Omega^n F$ is eventually an fmp for big enough n.

Lemma–Definition (Lurie)

Let F be a pre-fmp over k. Then the following are equivalent:

- $\Omega^n F$ is an fmp.
- So For all pullback squares B → k in dgArt_k, the map $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad A \rightarrow k \oplus k[n]$ F(B) → F(A) ×_{F(k⊕k[n])} * is (n 2)-truncated.

・ロン ・四 と ・ ヨン ・ ヨン

Let F be a pre-fmp which is not too bad, then $\Omega^n F$ is eventually an fmp for big enough n.

Lemma–Definition (Lurie)

Let F be a pre-fmp over k. Then the following are equivalent:

- $\Omega^n F$ is an fmp.
- For all pullback squares $B \longrightarrow k$ in $dgArt_k$, the map $\downarrow \qquad \downarrow$ $A \longrightarrow k \oplus k[n]$ $\sum_{k \to k} \sum_{k \to k} \sum$
 - $F(B) \longrightarrow F(A) \times_{F(k \oplus k[n])} *$ is (n-2)-truncated.
- **3** The map $F(A) \longrightarrow F^{\wedge}(A)$ is (n-2)-truncated for all $A \in dgArt_k$.

・ロト ・回ト ・ヨト ・ヨトー

Let F be a pre-fmp which is not too bad, then $\Omega^n F$ is eventually an fmp for big enough n.

Lemma–Definition (Lurie)

Let F be a pre-fmp over k. Then the following are equivalent:

- $\Omega^n F$ is an fmp.
- For all pullback squares $B \longrightarrow k$ in $dgArt_k$, the map $\downarrow \qquad \downarrow$ $A \longrightarrow k \oplus k[n]$

$$F(B) \longrightarrow F(A) \times_{F(k \oplus k[n])} *$$
is $(n-2)$ -truncated.

• The map $F(A) \longrightarrow F^{\wedge}(A)$ is (n-2)-truncated for all $A \in dgArt_k$.

We call such a fmp *n-proximate*.

イロト イ団ト イヨト イヨト

Let $E_0 \in T_0$ be an object. Set $T_A := T_0 \widehat{\otimes}_k \widehat{A}$.

メロト メロト メヨト メヨ

 $Def_{E_0} : dgArt_k \longrightarrow S$

$$Def_{E_0}(A) := \infty (T_A)^{\simeq} \times_{\infty (T_0)^{\simeq}} \{E_0\}$$

$$Def_{E_0} : dgArt_k \longrightarrow S$$

 $Def_{E_0}(A) := \infty(T_A)^{\simeq} \times_{\infty(T_0)^{\simeq}} \{E_0\}$

There exists examples of T_0 and E_0 such that Def_{E_0} is not an fmp.

A D > A B > A B >

$$Def_{E_0}$$
: $dgArt_k \longrightarrow S$

$$Def_{E_0}(A) := \infty(T_A)^{\simeq} \times_{\infty(T_0)^{\simeq}} \{E_0\}$$

There exists examples of T_0 and E_0 such that Def_{E_0} is not an fmp. However if T_0 has a left complete t-structure and E_0 is connective, then Def_{E_0} is an fmp.

(日) (同) (三) (三)

$$Def_{E_0}$$
: $dgArt_k \longrightarrow S$

$$Def_{E_0}(A) := \infty(T_A)^{\simeq} \times_{\infty(T_0)^{\simeq}} \{E_0\}$$

There exists examples of T_0 and E_0 such that Def_{E_0} is not an fmp. However if T_0 has a left complete t-structure and E_0 is connective, then Def_{E_0} is an fmp.

 $\Omega Def_{E_0}(A) \simeq Aut_{\infty(T_A)}(E_0 \otimes_k A)$

Image: A math the second se

$$Def_{E_0}: dgArt_k \longrightarrow S$$

$$Def_{E_0}(A) := \infty(T_A)^{\simeq} \times_{\infty(T_0)^{\simeq}} \{E_0\}$$

There exists examples of T_0 and E_0 such that Def_{E_0} is not an fmp. However if T_0 has a left complete t-structure and E_0 is connective, then Def_{E_0} is an fmp.

$$\Omega Def_{E_0}(A) \simeq Aut_{\infty(T_A)}(E_0 \otimes_k A)$$

It is known that ΩDef_{E_0} is an fmp.

A D > A B > A B > A

$$Def_{E_0}$$
: $dgArt_k \longrightarrow S$

$$Def_{E_0}(A) := \infty(T_A)^{\simeq} \times_{\infty(T_0)^{\simeq}} \{E_0\}$$

There exists examples of T_0 and E_0 such that Def_{E_0} is not an fmp. However if T_0 has a left complete t-structure and E_0 is connective, then Def_{E_0} is an fmp.

$$\Omega Def_{E_0}(A) \simeq Aut_{\infty(T_A)}(E_0 \otimes_k A)$$

It is known that ΩDef_{E_0} is an fmp.

Proposition (Lurie, Toën–Vaquié)

The pre-fmp Def_{E_0} is 1-proximate.

Image: A math a math

$$Def_{E_0}$$
: $dgArt_k \longrightarrow S$

$$Def_{E_0}(A) := \infty (T_A)^{\simeq} \times_{\infty (T_0)^{\simeq}} \{E_0\}$$

There exists examples of T_0 and E_0 such that Def_{E_0} is not an fmp. However if T_0 has a left complete t-structure and E_0 is connective, then Def_{E_0} is an fmp.

$$\Omega Def_{E_0}(A) \simeq Aut_{\infty(T_A)}(E_0 \otimes_k A)$$

It is known that ΩDef_{E_0} is an fmp.

Proposition (Lurie, Toën–Vaquié)

The pre-fmp Def_{E_0} is 1-proximate.

When T_0 is smooth proper, we even have a locally geometric stack of objects in T_0 (Toën–Vaquié).

< □ > < 同 > < 回 > < Ξ > < Ξ

$$\begin{split} \Omega Def_{T_0}(A) &\simeq Aut_{Dg^{cc}(A)}(T_A) \times_{Aut_{Dg^{cc}(k)}(T_k)} \{ id_{T_0} \} \\ &\simeq \operatorname{RMod}_{T_0^{op} \otimes_k T_0 \otimes_k A}^{inv, \simeq} \times_{\operatorname{RMod}_{T_0^{op} \otimes_k T_0}} \{ id_{T_0} \} \end{split}$$

★ロト ★問 と ★ 注 と ★ 注 と 二 注

$$\begin{split} \Omega Def_{\tau_0}(A) &\simeq Aut_{Dg^{cc}(A)}(T_A) \times_{Aut_{Dg^{cc}(k)}(T_k)} \{ id_{\tau_0} \} \\ &\simeq \operatorname{RMod}_{T_0^{op} \otimes_k T_0 \otimes_k A}^{inv, \simeq} \times_{\operatorname{RMod}_{T_0^{op} \otimes_k T_0}} \{ id_{\tau_0} \} \end{split}$$

The pre-fmp ΩDef_{T_0} is 1-proximate, hence Def_{T_0} is 2-proximate.

$$\begin{split} \Omega Def_{\tau_0}(A) &\simeq Aut_{Dg^{cc}(A)}(T_A) \times_{Aut_{Dg^{cc}(k)}(T_k)} \{ id_{\tau_0} \} \\ &\simeq \operatorname{RMod}_{T_0^{op} \otimes_k T_0 \otimes_k A}^{inv, \simeq} \times_{\operatorname{RMod}_{T_0^{op} \otimes_k T_0}} \{ id_{\tau_0} \} \end{split}$$

The pre-fmp ΩDef_{T_0} is 1-proximate, hence Def_{T_0} is 2-proximate.

$$\Omega^{2} Def_{T_{0}}(A) \simeq Aut_{Aut_{Dg^{cc}(A)}(T_{A})}(id_{T_{A}}) \times_{Aut_{Aut_{Dg^{cc}(k)}}(id_{T_{0}})} \{id_{id_{T_{0}}}\}$$

$$\begin{split} \Omega Def_{T_0}(A) &\simeq Aut_{Dg^{cc}(A)}(T_A) \times_{Aut_{Dg^{cc}(k)}(T_k)} \{ id_{T_0} \} \\ &\simeq \operatorname{RMod}_{T_0^{op} \otimes_k T_0 \otimes_k A}^{inv, \simeq} \times_{\operatorname{RMod}_{T_0^{op} \otimes_k T_0}} \{ id_{T_0} \} \end{split}$$

The pre-fmp ΩDef_{T_0} is 1-proximate, hence Def_{T_0} is 2-proximate.

$$\Omega^2 Def_{T_0}(A) \simeq Aut_{Aut_{Dg^{cc}(A)}}(\tau_A)(id_{\tau_A}) \times_{Aut_{Aut_{Dg^{cc}(k)}}(id_{\tau_0})} \{id_{id_{\tau_0}}\}$$

$$\mathcal{T}_{\Omega^2 Def_{\mathcal{T}_0}^{\wedge}} \simeq \mathcal{T}_{\Omega^2 Def_{\mathcal{T}_0}} \simeq \mathit{End}_{\mathit{End}(\mathcal{T}_0)}(\mathit{id}_{\mathcal{T}_0}) \simeq \mathit{HH}^{ullet}(\mathcal{T}_0)$$

$$\begin{split} \Omega Def_{\tau_0}(A) &\simeq Aut_{Dg^{cc}(A)}(T_A) \times_{Aut_{Dg^{cc}(k)}(T_k)} \{ id_{\tau_0} \} \\ &\simeq \operatorname{RMod}_{\tau_0^{op} \otimes_k \tau_0 \otimes_k A}^{inv, \simeq} \times_{\operatorname{RMod}_{\tau_0^{op} \otimes_k \tau_0}} \{ id_{\tau_0} \} \end{split}$$

The pre-fmp ΩDef_{T_0} is 1-proximate, hence Def_{T_0} is 2-proximate.

$$\Omega^2 Def_{T_0}(A) \simeq Aut_{Aut_{Dg^{cc}(A)}(T_A)}(id_{T_A}) \times_{Aut_{Aut_{Dg^{cc}(k)}}(id_{T_0})} \{id_{id_{T_0}}\}$$

$$T_{\Omega^2 Def_{\mathcal{T}_0}^{\wedge}} \simeq T_{\Omega^2 Def_{\mathcal{T}_0}} \simeq \textit{End}_{\textit{End}(\mathcal{T}_0)}(\textit{id}_{\mathcal{T}_0}) \simeq \textit{HH}^{\bullet}(\mathcal{T}_0)$$

Corollary

The map $Def_{\mathcal{T}_0}(A) \longrightarrow Def_{\mathcal{T}_0}^{\wedge}(A)$ is 0-truncated, i.e.

$$\begin{split} \Omega Def_{\tau_0}(A) &\simeq Aut_{Dg^{cc}(A)}(T_A) \times_{Aut_{Dg^{cc}(k)}(T_k)} \{ id_{\tau_0} \} \\ &\simeq \operatorname{RMod}_{\tau_0^{op} \otimes_k \tau_0 \otimes_k A}^{inv, \simeq} \times_{\operatorname{RMod}_{\tau_0^{op} \otimes_k \tau_0}} \{ id_{\tau_0} \} \end{split}$$

The pre-fmp ΩDef_{T_0} is 1-proximate, hence Def_{T_0} is 2-proximate.

$$\Omega^2 \mathsf{Def}_{\mathcal{T}_0}(A) \simeq \mathsf{Aut}_{\mathsf{Aut}_{\mathsf{Dg}^{\mathsf{cc}}(A)}(\mathcal{T}_A)}(\mathsf{id}_{\mathcal{T}_A}) \times_{\mathsf{Aut}_{\mathsf{Aut}_{\mathsf{Dg}^{\mathsf{cc}}(k)}}(\mathsf{id}_{\mathcal{T}_0})} \{\mathsf{id}_{\mathsf{id}_{\mathcal{T}_0}}\}$$

$$T_{\Omega^2 Def_{T_0}^{\wedge}} \simeq T_{\Omega^2 Def_{T_0}} \simeq End_{End(T_0)}(id_{T_0}) \simeq HH^{\bullet}(T_0)$$

Corollary

The map $Def_{\mathcal{T}_0}(A) \longrightarrow Def_{\mathcal{T}_0}^{\wedge}(A)$ is 0-truncated, i.e.

- is an isomorphism on π_i for all $i \ge 2$.
- is injective on π_1 .

イロト イヨト イヨト イヨ

Idea

The *n*-proximate property is related to the property of being defined on E_n -algebras, and to a description in terms of Koszul duality of E_n -algebras, where eventually $n = \infty$.

メロト メポト メヨト メ

Idea

The *n*-proximate property is related to the property of being defined on E_n -algebras, and to a description in terms of Koszul duality of E_n -algebras, where eventually $n = \infty$.

Proposition (Lurie)

• Def_{E_0} is an E_1 -fmp. There exists an equivalence

$$Def_{E_0}^{\wedge}(A) \simeq Map_{E_1-Alg_k}(\mathfrak{D}^{(1)}(A), End_{T_0}(E_0)).$$

• Def_{T_0} is an E_2 -fmp. There exists an equivalence

$$\mathsf{Def}^{\wedge}_{T_0}(\mathsf{A})\simeq \mathsf{Map}_{\mathsf{E}_2-\mathsf{Alg}_k}(\mathfrak{D}^{(2)}(\mathsf{A}),\mathsf{HH}^{ullet}(T_0)).$$

Where $\mathfrak{D}^{(n)}$ is the Koszul duality functor for E_n -algebras.

A D > A P > A B > A

Idea

The *n*-proximate property is related to the property of being defined on E_n -algebras, and to a description in terms of Koszul duality of E_n -algebras, where eventually $n = \infty$.

Proposition (Lurie)

• Def_{E_0} is an E_1 -fmp. There exists an equivalence

$$Def_{E_0}^{\wedge}(A) \simeq Map_{E_1-Alg_k}(\mathfrak{D}^{(1)}(A), End_{T_0}(E_0)).$$

• Def_{T_0} is an E_2 -fmp. There exists an equivalence

$$\mathsf{Def}^{\wedge}_{\mathcal{T}_0}(\mathsf{A})\simeq \mathsf{Map}_{\mathsf{E}_2-\mathsf{Alg}_k}(\mathfrak{D}^{(2)}(\mathsf{A}),\mathsf{HH}^{ullet}(\mathcal{T}_0)).$$

Where $\mathfrak{D}^{(n)}$ is the Koszul duality functor for E_n -algebras.

Corollary

$$Def^{\wedge}_{T_0}(A) \simeq Map_{Cat^{\otimes}_{\infty}}(\mathrm{RMod}^{\otimes}_{\mathfrak{D}^{(2)}(A)}, End^{\otimes}(T_0))$$

 $\simeq \{\mathfrak{D}^{(2)}(A)\text{-linear structures on } T_0\}$

Anthony Blanc (MPIM Bonn)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$egin{aligned} & \mathsf{Def}^\wedge_{E_0}(A)\simeq \mathsf{Map}_{E_1-\mathsf{Alg}_k}(\mathfrak{D}^{(1)}(A),\mathsf{End}_{T_0}(E_0))\ &\simeq (\operatorname{LMod}_{\mathfrak{D}^{(1)}(A)}(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\}\ &\simeq (\operatorname{RMod}^!_A(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \end{aligned}$$

★ロト ★問 と ★ 注 と ★ 注 と 二 注

$$egin{aligned} \mathsf{Def}^\wedge_{E_0}(A) &\simeq \mathsf{Map}_{E_1 - \mathsf{Alg}_k}(\mathfrak{D}^{(1)}(A), \mathsf{End}_{T_0}(E_0)) \ &\simeq (\mathrm{LMod}_{\mathfrak{D}^{(1)}(A)}(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \ &\simeq (\mathrm{RMod}^!_A(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \end{aligned}$$

If A is an E_1 -algebra, $\operatorname{RMod}_A^! := \operatorname{Ind}(\operatorname{RMod}_A^{sm})$ where an A-module is small if its underlying k-module has finite dimensional total cohomology.

A D > A B > A B >

$$egin{aligned} \mathsf{Def}^\wedge_{E_0}(A) &\simeq \mathsf{Map}_{E_1-\mathsf{Alg}_k}(\mathfrak{D}^{(1)}(A), \mathsf{End}_{T_0}(E_0)) \ &\simeq (\operatorname{LMod}_{\mathfrak{D}^{(1)}(A)}(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \ &\simeq (\operatorname{RMod}^!_A(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \end{aligned}$$

If A is an E_1 -algebra, $\operatorname{RMod}_A^! := \operatorname{Ind}(\operatorname{RMod}_A^{sm})$ where an A-module is small if its underlying k-module has finite dimensional total cohomology.

Let $\underline{\operatorname{Aut}}_{\mathcal{T}_0} := \Omega Def_{\mathcal{T}_0}$ be the deformation functor of $id_{\mathcal{T}_0}$ in $\operatorname{RMod}_{\mathcal{T}_0^{op} \otimes_k \mathcal{T}_0}$.

A D N A P N A B N A

$$egin{aligned} \mathsf{Def}^\wedge_{E_0}(A) &\simeq \mathsf{Map}_{E_1 - \mathsf{Alg}_k}(\mathfrak{D}^{(1)}(A), \mathsf{End}_{T_0}(E_0)) \ &\simeq (\operatorname{LMod}_{\mathfrak{D}^{(1)}(A)}(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \ &\simeq (\operatorname{RMod}^!_A(\infty(T_0))^\simeq imes_{\infty(T_0)} \{E_0\} \end{aligned}$$

If A is an E_1 -algebra, $\operatorname{RMod}_A^! := \operatorname{Ind}(\operatorname{RMod}_A^{sm})$ where an A-module is small if its underlying k-module has finite dimensional total cohomology.

Let $\underline{\operatorname{Aut}}_{\mathcal{T}_0} := \Omega Def_{\mathcal{T}_0}$ be the deformation functor of $id_{\mathcal{T}_0}$ in $\operatorname{RMod}_{\mathcal{T}_0^{op} \otimes_k \mathcal{T}_0}$.

Corollary

The formal moduli problem $\underline{\operatorname{Aut}}_{T_0}^{\wedge}$ is equivalent to

$$\underline{\operatorname{Aut}}^!_{\mathcal{T}_0}: A \longmapsto \left(\operatorname{RMod}^!_{\mathcal{T}_0^{op} \otimes_k \mathcal{T}_0 \otimes_k A} \right)^{inv, \simeq} \times_{\left(\operatorname{RMod}^!_{\mathcal{T}_0^{op} \otimes_k \mathcal{T}_0} \right)^{inv, \simeq}} \{ id_{\mathcal{T}_0} \}$$

Image: A math a math

$FMP_k \subset FMP_k^{(1)} \subset FMP_k^{(2)} \subset \ldots \subset PFMP_k$

メロト メポト メヨト メヨト

$$FMP_k \subset FMP_k^{(1)} \subset FMP_k^{(2)} \subset \ldots \subset PFMP_k$$

For every integer *n*,

$$\Omega^n : FMP_k^{(n)} \longrightarrow E_n - Gp(FMP_k)$$

メロト メロト メヨト メヨト

$$FMP_k \subset FMP_k^{(1)} \subset FMP_k^{(2)} \subset \ldots \subset PFMP_k$$

For every integer *n*,

$$\Omega^n: FMP_k^{(n)} \longrightarrow E_n - Gp(FMP_k)$$

Proposition

Let F be an *n*-proximate formal moduli problem. Then we have an equivalence:

$$F^{\wedge}(A) \simeq Map_{E_n-Gp(FMP_k)}(\Omega^n h_{Spec(A)}, \Omega^n F)$$

・ロト ・日子・ ・ ヨト

$$FMP_k \subset FMP_k^{(1)} \subset FMP_k^{(2)} \subset \ldots \subset PFMP_k$$

For every integer *n*,

$$\Omega^n: FMP_k^{(n)} \longrightarrow E_n - Gp(FMP_k)$$

Proposition

Let F be an *n*-proximate formal moduli problem. Then we have an equivalence:

$$F^{\wedge}(A) \simeq Map_{E_n-Gp(FMP_k)}(\Omega^n h_{Spec(A)}, \Omega^n F)$$

This is based on the

Proposition

The functor Ω^n restricted to FMP_k is an equivalence.

$$\Omega^{(n)}_{|FMP_k}:FMP_k\longrightarrow E_n-Gp(FMP_k)$$

Image: A math a math

Proposition

Let $T_0 \in Dg^{cc}(k)$, there exists an equivalence:

$$Def_{T_0}^{\wedge}(A) \simeq Map_{E_1 - Gp(FMP_k)}(\Omega h_{Spec(A)}, \underline{\operatorname{Aut}}_{T_0}^!).$$

Proposition

Let $T_0 \in Dg^{cc}(k)$, there exists an equivalence:

$$Def_{T_0}^{\wedge}(A) \simeq Map_{E_1 - Gp(FMP_k)}(\Omega h_{Spec(A)}, \underline{\operatorname{Aut}}_{T_0}^!).$$

Remark

When \mathcal{T}_0 is smooth and proper, the canonical map $\underline{\operatorname{Aut}}_{\mathcal{T}_0} \longrightarrow \underline{\operatorname{Aut}}_{\mathcal{T}_0}^!$ is an equivalence, because $\underline{\operatorname{Aut}}_{\mathcal{T}_0}$ is the restriction to artinian algebras of a geometric stack.

<ロト </p>

Proposition

Let $T_0 \in Dg^{cc}(k)$, there exists an equivalence:

$$Def_{T_0}^{\wedge}(A) \simeq Map_{E_1 - Gp(FMP_k)}(\Omega h_{Spec(A)}, \underline{\operatorname{Aut}}_{T_0}^!).$$

Remark

When \mathcal{T}_0 is smooth and proper, the canonical map $\underline{\operatorname{Aut}}_{\mathcal{T}_0} \longrightarrow \underline{\operatorname{Aut}}_{\mathcal{T}_0}^!$ is an equivalence, because $\underline{\operatorname{Aut}}_{\mathcal{T}_0}$ is the restriction to artinian algebras of a geometric stack.

Theorem (B.–Pandit)

Let T_0 be a smooth proper dg-category in $Dg^{cc}(k)$. For every $\{\alpha_i\}_i \in Def^{\wedge}_{T_0}(k[t])$ there exists a proper dg-algebra B over k[t] such that

$$\mathsf{Def}^{dga}_{B_0}(k\llbracket t
rbracket) \longrightarrow \mathsf{Def}^\wedge_{T_0}(k\llbracket t
rbracket)$$

maps B to $\{\alpha_i\}_i$.

イロト イ団ト イヨト イヨト

Corollary

Let $T_0 \in Dg^{cc}(k)$ be a smooth proper dg-category. Then the map $Def_{T_0}(k[t]) \longrightarrow Def_{T_0}^{\wedge}(k[t])$ is an equivalence. In other word, the naive definition of deformation works out.