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Lie algebras in algebraic topology

Definition A Lie algebra is a vector space L
with a bilinear operation

[—,—]: LxL—L

satisfying:
1. [a,b] = —[b,a], a,b € L,

2. [a., [b,c]] = [[a, b],c] + lb, la, c]], a,b,ce L.



Lie algebras in algebraic topology

Definition A differential graded Lie algebra is a graded
vector space L = @Dpez Ly

e with a bilinear operation
[—,—]: LxL— L
such that [L,, L,] C L,4,, satisfying:

1. [a,b] = —(=1)P![b,a], a € L,,b€ L,,
2. [a, b, c]] = l[a, b],c] + (—1)P lb, la, c]], a€ Ly,be L,,ce L.



Lie algebras in algebraic topology

Definition A differential graded Lie algebra is a graded
vector space L = @Dpez Ly

e and a linear map 0: L — L such that 0L, C L,_, satisfying:

1. dod =10,
2. Jla,b] = [Da,b] + (—1)P[a, Ob], a € L,,b € L.



Lie algebras in algebraic topology

At the end of the 60’s Daniel Quillen introduced
Rational Homotopy Theory

If f: X - Y is a continuous map

between simply connected CW-complexes,
the following properties are equivalent:

1. mp(f) ® Q: mp(X) @ Q 5 T(Y)®Q, n > 2.

2. H,(f)® Q: Hy(X:;Q) > H,(Y:Q), n> 2.

Such a map is called a rational homotopy equivalen ce.



Lie algebras in algebraic topology

Definition
X is rational if its homotopy groups are

-vectors spaces.
A rationalisation of X is a pair (Xg, f),
with Xg a rational space and f: X — Xg

a rational homotopy equivalence.

The study of the rational homotopy type of
X is the study of the homotopy type of Xg.




Lie algebras in algebraic topology

The importance of Quillen work is that it

associates to any simply connected space X
a differential graded Lie algebra (DGL).

_—
<—— DGL.
spaces -

{ Simply connected } A
)Q

X ——A(X)
(AMX)) @ ~ Xg

(L,[—,—],0) is a DGL model of X if

o [

}‘(}f) = s e<— ... ~ 0 < L

12




Lie algebras in algebraic topology

Example H, 1(L,0) = m(X) ® Q.
S" ~~s (L(2),0), || =n— 1.

In 1951 J.P. Serre showed that homotopy groups of spheres
are all finite except those of the form

Tm(S™) or Tym_1(S*™).

n odd. Then |z| =n — 1 is even.

As graded vector space L(z) = (x), since [z, z] = 0 by antisymmetry.

Q= H, 1(L(z),0) = m,(5") ® Q.



Lie algebras in algebraic topology

Example H, 1(L,0) = m(X) ® Q.
S" ~~s (L(2),0), || =n— 1.

In 1951 J.P. Serre showed that homotopy groups of spheres
are all finite except those of the form

Tm(S™) or Tym_1(S*™).

n even. Then |z| =n — 1is odd. As graded vector space

L(z) = ‘fi)-'@ ([x,x]), since [z, [z, z]] = 0 by Jacobi.

Q= Hp1(L(z),0) = m,(S™) & Q.
Q= Hzp—2(L(2),0) = ([, z])

= Ton—1 (Sn) X Q — T4m—1 (S2m) & Q



Lie algebras in deformation theory

Let A be an associative algebra.

Ax A— A bilinear and associative

(a,b) — a-b

A deformation of Ain A[t]
is a new bilinear and associative product

«: Alt] x A[t] — A[t]

oo 00
(Z a@-ti) * (Z biti) = ag - bo+ c1t + cztz + cgt3 4.
- = c; € A.



Lie algebras in deformation theory

We can deform any algebraic structure
in a vector space A.

Instead of A[t], we can consider a local ring R
with a unique maximal ideal 9T with R/9t = K.

A deformation of A on A® R is an operation
x: (AQ R) x (A® R) —» (A® R)

satisfying the same properties of the original
such that we recover the original operation
taking quotient by N

Ax A— A



Lie algebras in deformation theory

We denote by Def(A, R) the set of equivalence classes
of deformations of A on A ® R.

Deligne principle
“in characteristic 0 every deformation problem
is governed by a differential graded Lie algebra”

There exists a differential graded Lie algebra
L = L(A, R) such that we have a bijection

Def(A4, R) = MC(L)/G.



Lie algebras in deformation theory

Let L be a DGL. a € L_; is a Maurer-Cartan
element if satisfies the equation

1
da = —§[a, a).

Two Maurer-Cartan elements a,b € MC(L) are
gauge-equivalent, a ~g b if there is an element
x € Ly such that

eddz _ i

b= ad g _
e (a) "

(0x).

Deligne principle can be written as

Def(A; R) = MC(L)/ ~g¢ .



Lie algebras in deformation theory

What is the connection between differential graded Lie algebras
of Quillen rational homotopy and Deformation theory?

DGL. DGL
Simply connected Def(A, R)
spaces

There is only one
Maurer-Cartan element Def(A; R) = MC(L)/ ~g .
9(0) = 0 = —%[0,0]



Sullivan vs Quillen rational homotopy theory

{ Simply connected

Spaces } = sGp == sCHA =——=sLA =——=DGL.

X ——=\(X) Simply connected r o
finite type spaces -
(L)q =—L

. : App,
{ Nilpotent, finite } —= CDGA,
type spaces —)s

1. (A)s = CDGA(A,Q,)
where (14 is a simplicial CDGA X ——ApL(X)

2. (A)g has sense also for A a Z-graded CDGA, (A)s =—— A
but (L) ¢ is not defined if L is Z-graded DGL.



Free Lie model of an n-simplex

For each n > 0, consider the standard n-simplex A"
ﬂg’: {(i{],...,ip) | Oéh} < v e <ip£?1 }, if péﬂ
and A7 =0 if p > 0.

Let (ﬂ(s‘lﬁn), d) be the complete free DGL on the
desuspended rational simplicial chain complex on A"

P
da,...;, = Z(—I)Jﬂm...“
—

where a;,.;, denotes the generator of degree p — 1
represented by the p-simplex (ig,...,i,) € AJ.



Free Lie model of an n-simplex

Problem Define a differential d in L(s ' A") such that:

1. For each i = 0,...,n the generator a; € AJ

is a Maurer-Cartan element

1
da; = —5lai, ai].

2. The linear part d; of 0 is precisely d.



Free Lie model of an n-simplex

Examples
n=>0 ey

L(s71A%), d) = (L(ao), dag = 0).
The first condition implies (L(ag), Dag = —%[aﬂ, ag))-



Free Lie model of an n-simplex

n=1 ap1

(E(S_lﬁl): d) = (E(ﬂﬁaﬂl, ao1 ), d),

dﬂﬂ = dal = 0
dagr = ap — m
The first condition implies  9q, = —%[ﬂﬂ, ap], Oa; = _%[al,gl],

The second condition implies dragr = ag — ax.

Is this a differential? NO!

1 1
8%aogr = 0(ap — ay) = _i[aﬂaaﬂ] + E[alaal] # 0.



Free Lie model of an n-simplex

n=1

ap® e

dagr = ap — m + A1[ao1, ao) + pu1[aor, a1

+)‘2 aﬂl}[aﬂl:aﬂ]“ + M2

-601 , [ao1, m ﬂ

+A3 :aﬂl , [&01, lao1, ﬂﬂ]]

The Lawrence-Sullivan interval

(L(ao, a1, aoy ), d),

B. .
dag1 = [ao1,a0] + ) —rady,, (a0 — ar)
i>0

+ p3 [Gm, [ﬂﬂl ,laot, ﬂl]”



Free Lie model of an n-simplex

n =2
(L(s™*A?),d)

- (E(aﬂaﬂlaGz,ﬂ:ﬁlgﬂm,{lm,amg),d) ai2
dag = day = day = 0 ao ®
dag, = ap — a
dagz = ap — a

dﬂm = a; — a9

.

= a12 — ap2 + apy



Free Lie model of an n-simplex

n =2

L(s~'A2

L(s~a%),d) &

= (L(ao, a1, az, ao1, ao2, ai2, ap12), d) @12
dag = da; = das = 0 ao ®
dapy = a9 — a1 MC
daﬂ2 — ap — as

dﬂm = a; — a9

dapg1o = a1o — aps + ap



Free Lie model of an n-simplex

n =2

L(s1A2

L4, 4) &

= (L(ao, a1, az, ao1, ao2, ai2, ap12), d) @12

dag = day — day — 0 aop ® . ea;
dagr = ap — @ MC LDSI MC
dage = ay — a»

dﬂl'z = a; — a aaﬂl.z = Q12 — Qg2 + g1+ ?

dapg1o = a1o — aps + ap



Free Lie model of an n-simplex

The Bziker-Caxnpbell—Hausdnrﬂ' formula

Let x,y be two non-commuting variables. f(m,y)

The Baker-Campbell-Hausdorff formula x * y
is the solution to z = log (exp(a:)exp(y)).

Explicitely

o0
vry =Y zn(z,y)
n=0

e
n\Ey g, PR
= k pilal! - prlas!

mt+a >0 5o+ >0pr+q+- -+ pet+qe=n.



Free Lie model of an n-simplex

The Bziker-Caxnpbell—Hausdnrﬂ' formula

The Baker-Campbell-Hausdorff formula
satisfies the following properties:

e x is an associative product: (z *y) * 2 = x * (y * 2).

e I xy can be written as a linear

combination of nested commutators

1

+ 1y + 1[ ] + | ]] L [ [ ]] +
::'I': p— -_— — — — L]

zxy € L(z,y) C T(z,y).



Free Lie model of an n-simplex

n=2 MC
ao

T (a—1 A2 I
C(s~a%.d & ¢
- (L(%:ﬂ1=ﬂ2,%1,%2,G12,£1012)=d) @12 BCH ap2
dag = day — day — 0 aop ® . ea;
dap1 = ap — a MC LDSI MC
daﬂ2 — Qg — as

darz = a1 = a dap12 = a12 — Go2 + Go1+ ?

dagi2 = ay2 — ag2 + apy

dapi12 = ap1 * a2 * (—Goz) — [0012, ﬂﬁ]




The realization functor

ap Jdo O
(L(sA%),0) == (L(s "A"),9) == (L(s7'A?),9)
Il 80 01 |l 8o & O |l
2o £ Lo

Theorem

o — (g is a cosimplicial DGL.|B:: Y- Felix, A. Murillo, D. Tanre.
* { n}ngu P Preprint 2015

Definition
Define a functor from the category of complete DGL’s
to the category of simplicial sets by

(—): DGL — SimpSet (L), = DGL(£,, L)

(—=)s: CDGA — SimpSet (A)n = CDGA(A,Q,)
where Qn = APL(ﬁn).



The realization functor

Proposition

Proof:
(L)o = DGL(L(ap), L) = MC(L)
Two Maurer-Cartan elements zp, 21 € MC(L) are gauge-equivalent

if there is amap v : £, = (ﬂ(aﬁ,al, ap1 ), ) — L with ¥ (ag) = 2o
and ¥(ay) = 2.

(L), = DGL(L(ag, a1, ap1 ), L). .



The realization functor

Let (L, 0) be a DGL. (L) is a non-connected space
mo(L) = MC(L)/ ~¢ Let z € MC(L)

Consider the differential 0% = 9 + ad..

Define (L*,0%*) € DGLy by
(0 if p<O

(L,)* = Kerd*: Ly— Ly if p=0

| L, it p>0

Theorem

(=~ U @)

[zl eEMC(L)/~




The realization functor

Proposition

Let (L, d) be a non-negatively graded DGL. Then (L) is a
connected simplicial set and there are bijections

molL) = H,_1(L, ), n>1,

which are group isomorphism for n > 2.



The realization functor

e Theorem

Let (L, Q) be a finite type DGL positively graded.
There is a homotopy equivalence of simplicial sets

(L) ~{C*(L))s



The realization functor

e Conjecture
Let (L,0) be a DGL. Consider the simplicial set

MC,e(L) = MC(L ® £2,)

(L) ~ MC, (L)
7

If L and L' are DGL’s conectrated in [0, 00) and ¢p: L — L'
is a quasi-isomorphism, then

MC. (1)) : MCo(L) — MCo(L')

is a homotopy equivalence.



The realization functor

If L and L' are Z-graded DGL’s and ¢: L — L’
is a morphism with:

o MC(): MC(L)/ ~g 5 MC(L)/ ~g

o i [F S L'V for any 2 € MC(L),

Then there is a homotopy equivalence of simplicial sets
(L) ~ (L")

12

J (@)

(2] eMC(L)/~

Proof: (L)

MC, (L) ~ MC,(L')



The realization functor

e Conjecture

Let (L,0) € DGL,
(L) the realization of L

A(L) the Quillen DGL associated to the above simplicial set

s s

)\(L) — e =<

I
|2

Y
]
A
~

This will show that the original Quillen
realization functor is representable.




Topological number theory

¢ = (L(ao, a1, ao1 ), )

0 =0
X
ap ~¢g a; through ag; € £o
X
T
For any triple (a, b, ¢) with Z MeBpB,_ =0, n> 4.
a—+ b"‘ cC=n — ]_ k=0
min (a,k)
— k k
A = (Z’) [(—1)C(n . ) D> (—l)f(g) B., J.G. Carrasquiel,
¢=max (0,k—b) and A. Murillo,

min (c.k)

n—k ke Preprint 2015
(") 3 (‘”f(e)]'
¢=max (0,k—b)



Topological number theory

Euler identity

n—2
—(n+1)B, = 2 (:)Banka n 24,
k=2

Consider (a, b,:c) = (0,0,n —1).

H. Miki identity

n—2
2H, B, = kz k_(ﬂn_ %) (1 — (:))BﬁcBﬂ—ka n >4,
=2

where H,, =1+ 5+ -+ + L.

Consider (a,b,c) = (0,b,n —1—b)forb=1,..., %



Topological number theory

e

(L(a’ﬂ'? ay, as, o1, o2, a2, (1012), 3)
=0

)

Properties of the Baker-Campbell-Hausdorff formula

0

n B., J.G. Carrasquel,
> \BuBr =0 and A. Murillo,
k=0 In preparation

where B, is the coefficient of the word w = zP 1y - .- xPsy?
in the Baker-Campbell-Hausdorff formula.

Note that ‘B, gen-era,lizes the Bernoulli numbers

If w = aPya?, then B, = 22,




Topological number theory

What is a 2-dimensional analogue of Miki’s identity?

What is a 2-dimensional analogue of H, =1+ &+ -+ £7

T

Thank youl!



