Session
Abstract: In algebraic geometry, moduli spaces parametrize equivalence classes of certain geometric objects (curves of given genus, abelian varieties of given dimension, ...). They carry a remarkable geometric structure governed by the deformation theory of the parametrized objects, and as such they are rarely complete. Constructing a geometrically meaningful completion for them is crucial for applications, and has been a widely investigated problem since the half of the 20th century. The talk will describe some general aspects and recent developments, focusing on the cases of curves and abelian varieties.