Focus on:
All days
Jul 6, 2022
Jul 7, 2022
Jul 8, 2022
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Italiano (Italia)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
The Dirac Equation
from
Wednesday, July 6, 2022 (1:00 PM)
to
Friday, July 8, 2022 (1:00 PM)
Monday, July 4, 2022
Tuesday, July 5, 2022
Wednesday, July 6, 2022
1:00 PM
Buffet + Accueil
Buffet + Accueil
1:00 PM - 2:30 PM
Room: Salle de Conférences
2:30 PM
Jérôme Cayssol: Dirac materials.
Jérôme Cayssol: Dirac materials.
2:30 PM - 3:30 PM
Room: Salle de Conférences
In this talk, I will explain how the Dirac equation can be used to describe the physics of materials like graphene and topological insulators. I will present briefly the topological band theory for Bloch electrons in crystalline materials. Specific examples of tight-binding models giving rise to lattice versions of the Dirac equation in various space dimension will be discussed in various space dimensions : 1D (Su–Schrieffer–Heeger and Rice–Mele models), 2D (graphene, boron nitride, Haldane model) and 3D (Weyl semi-metals). I will show how the Dirac equation provides a description of the physics near specific points in reciprocal space, and also allows to predict edge/surface states between various Dirac materials. J. Cayssol and J.N. Fuchs, "Topological and geometrical aspects of band theory", J. Phys. Mater. 4, 034007 (2021).
3:30 PM
Biagio Cassano: General δ-shell interactions for the two-dimensional Dirac operator.
Biagio Cassano: General δ-shell interactions for the two-dimensional Dirac operator.
3:30 PM - 4:30 PM
Room: Salle de Conférences
In this talk we will consider the two-dimensional Dirac operator with general local singular interactions supported on a closed curve. A systematic study of the interaction is performed by decomposing it into a linear combination of four elementary interactions: electrostatic, Lorentz scalar, magnetic, and a fourth one which can be absorbed by using unitary transformations. We address the self-adjointness and the spectral description of the underlying Dirac operator, and moreover we describe its approximation by Dirac operators with regular potentials. This is a joint work with V. Lotoreichik, A. Mas and M.Tušek.
4:30 PM
Pause café
Pause café
4:30 PM - 5:00 PM
5:00 PM
Pablo Miranda: Asymptotic behavior of the Spectral Shift Function for a discrete Dirac type operator in Z^2.
Pablo Miranda: Asymptotic behavior of the Spectral Shift Function for a discrete Dirac type operator in Z^2.
5:00 PM - 6:00 PM
Room: Salle de Conférences
In this talk, we consider a Dirac type operator in the graph Z^2. This is a matrix difference operator defined on the vertices and edges of Z^2, together with a perturbation given by a potential that decays at infinity. We are interested in the spectral properties of this operator, which we will study through the analysis of the spectral shift function. Our main theorem describes the asymptotic behavior of this function near the thresholds in the spectrum. The main novelty of this work is related to the nature of the thresholds of our model, for which the spectral shift function has not been studied before. In particular, we consider parabolic and hyperbolic thresholds as well as Dirac points. This part of a joint work with Daniel Parra and Georgi Raikov.
Thursday, July 7, 2022
9:00 AM
Simona Rota Nodari: The Dirac-Klein-Gordon system in the strong coupling limit.
Simona Rota Nodari: The Dirac-Klein-Gordon system in the strong coupling limit.
9:00 AM - 10:00 AM
Room: Salle de Conférences
In this talk, I will present a recent result on the behaviour of the solutions of a Dirac-Klein-Gordon system in the limit of strong coupling and large masses of the Klein-Gordon fields. I will prove convergence of the solutions to the system to those of a cubic non-linear Dirac equation. This shows that in this parameter regime, which is relevant to the relativistic mean-field theory of nuclei, the retarded interaction is well approximated by an instantaneous, local self-interaction. This is a joint work with J. Lampart, L. Le Treust and J. Sabin.
10:00 AM
Pause café
Pause café
10:00 AM - 10:30 AM
10:30 AM
Fabio Pizzichillo: Boundary value problems for 2-D Dirac operator on Corner domains and the Coulomb interaction.
Fabio Pizzichillo: Boundary value problems for 2-D Dirac operator on Corner domains and the Coulomb interaction.
10:30 AM - 11:30 AM
Room: Salle de Conférences
This talk aims to present results on the self-adjoint extensions of Dirac operators on plane domains with corners in dimension two. We consider the case of infinite-mass boundary conditions and we obtain explicitly the self-adjoint extensions of the operator. It turns out that the presence of corners typically spoils the elliptic regularity known to hold for smooth boundaries. Then we discuss the self-adjointness and some spectral properties of these operators in presence of a Coulomb-type potential with the singularity placed on the vertex. This is a collaboration work with Hanne Van Den Bosch, Biagio Cassano and Matteo Gallone.
11:30 AM
Orville Damaschke: An L2-index theorem for the Dirac operator on globally hyperbolic spacetimes.
Orville Damaschke: An L2-index theorem for the Dirac operator on globally hyperbolic spacetimes.
11:30 AM - 12:30 PM
Room: Salle de Conférences
Index theory deals with solutions of certain differential equations, where the index roughly measures the difference between the number of kernel solutions and constraints coming from inhomogeneities. The famous Atiyah-Singer index theorem states, that for an elliptic operator this number can be expressed with topological data of the underlying (compact) Riemannian manifold - generalizations to singular and non-compact Riemannian spaces are known and well studied. Next to an analytical interest the index also appears formally in the study of anomalies in relativistic quantum field theories, where the underlying manifold is Lorentzian and the operator of interest usually hyperbolic. A rigorous treatment of these anomalies were not clear until the groundbreaking result of Bär and Strohmaier in 2015. Since then several extensions and applications have been discussed and are supposed to play a crucial role in the future analysis of quantum anomalies on globally hyperbolic spacetimes as well as differential geometry of pseudo-Riemannian manifolds.
12:30 PM
Déjeuner
Déjeuner
12:30 PM - 2:30 PM
2:30 PM
Albert Mas: Spectral analysis of a confinement model in relativistic quantum mechanics.
Albert Mas: Spectral analysis of a confinement model in relativistic quantum mechanics.
2:30 PM - 3:30 PM
Room: Salle de Conférences
In this talk we will focus on the Dirac operator on domains of R^3 with confining boundary conditions of scalar and electrostatic type. This operator is a generalization of the MIT-bag operator, which is used as a simplified model for the confinement of quarks in hadrons that has interested many scientists in the last decades. It is conjectured that, under a volume constraint, the ball is the domain which has the smallest first positive eigenvalue of the MIT-bag operator. I will describe our results -in collaboration with N. Arrizabalaga (U. País Vasco), T. Sanz-Perela (U. Autónoma de Madrid), and L. Vega (U. País Vasco and BCAM)- on the spectral analysis of the generalized operator. I will discuss on the parameterization of the eigenvalues, their symmetry and monotonicity properties, the optimality of the ball for large values of the parameter, and the connection to boundary Hardy spaces.
3:30 PM
Matteo Capoferri: The massless Dirac operator: global propagator and applications.
Matteo Capoferri: The massless Dirac operator: global propagator and applications.
3:30 PM - 4:30 PM
Room: Salle de Conférences
In my talk I will present a global, invariant and explicit construction of hyperbolic propagators on closed Riemannian manifolds, with a special focus on the massless Dirac operator in dimension 3. I will show that the propagator can be written, modulo an operator with infinitely smooth kernel, as the sum of two oscillatory integrals, global in space and in time, and that this can be done in an invariant geometric fashion. I will then analyse the results through the prism of pseudodifferential techniques developed in a series of recent joint papers by Dmitri Vassiliev and myself, which, among other things, allow one to extend the construction to the Lorentzian setting. Time permitting, I will discuss applications to spectral theory and quantum field theory. The talk is based on joint work with Dmitri Vassiliev (UCL) and Simone Murro (Genova).
4:30 PM
Pause café
Pause café
4:30 PM - 5:00 PM
5:00 PM
Badreddine Benhellal: A Poincaré-Steklov operator for the MIT bag model.
Badreddine Benhellal: A Poincaré-Steklov operator for the MIT bag model.
5:00 PM - 6:00 PM
Room: Salle de Conférences
In this talk, I will discuss the pseudodifferentiel properties of the Poincaré-Steklov (PS) operator associated with the MIT bag operator on a smooth domain $\O\subset\rr^3$ with a compact boundary $\partial\O$. This operator can be seen as the analog of the Dirichlet-to-Neumann mapping, where the free Dirac operator $D_m=-i\alpha\cdot\nabla +m\beta$ plays the role of the Laplace operator, and the Dirichlet and the Neumann traces are replaced by orthogonal projections of the Dirichlet traces along the boundary $\partial\O$. In the first part of this talk, I will explain how the PS operator fits well into the framework of classical pseudodifferential operators and determine its principal symbol. In the second part, I will discuss the properties of the PS operator when the mass $m$ becomes large enough. Namely, I will show that it is a $1/m$-pseudodifferential operator and I will give its main properties, in particular its semiclassical principal symbol. Then we apply these results to establish a Krein-type resolvent formula for the Dirac operator $H_M= D_m+ M\beta 1_{\rr^3\setminus\overline{\O}}$ in terms of the resolvent of the MIT bag operator when $M>0$ is large enough. With its help, we show that in the large coupling limit $M\rightarrow\infty$, the operator $H_M$ convergences toward the MIT bag operator in the norm-resolvent sense with a convergence rate of $\mathcal{O}(M^{-1})$. This talk is based on joint work with Vincent Bruneau and Mahdi Zreik.
8:00 PM
Dîner
Dîner
8:00 PM - 11:00 PM
Friday, July 8, 2022
9:00 AM
Luz Roncal: Wavelet analysis and the Frisch--Parisi formalism for the Schrödinger equation.
Luz Roncal: Wavelet analysis and the Frisch--Parisi formalism for the Schrödinger equation.
9:00 AM - 10:00 AM
Room: Salle de Conférences
We consider the solution of the Schrödinger equation when the initial datum tends to the Dirac comb. It is known that the fluctuations associated to this equation can be expressed via a simplification of the Riemann non-differentiable function. We prove, using wavelet analysis, that the Frisch--Parisi multifractal formalism holds in this context. Joint work with Sandeep Kumar, Felipe Ponce-Vanegas, and Luis Vega.
10:00 AM
Pause café
Pause café
10:00 AM - 10:30 AM
10:30 AM
Brice Flamencourt: Dirac operators with large masses.
Brice Flamencourt: Dirac operators with large masses.
10:30 AM - 11:30 AM
Room: Salle de Conférences
We consider a particular class of Dirac operators with a potential interpreted as masses in separated regions of space. These operators appear naturally in the study of the MIT Bag model in dimension 3. We are interested in the behaviour of their eigenvalues when the masses become large. This problem admits a generalization in higher dimensions, and it can also be consider from the point of view of spin geometry. We recall the construction of the Dirac operator on spin manifolds, so we can define a generalized MIT Bag Dirac operator for which we obtain convergence results in certain asymptotic regimes.
11:30 AM
Rémi Mokdad: Scattering of Dirac Fields in the Interior of Black Holes.
Rémi Mokdad: Scattering of Dirac Fields in the Interior of Black Holes.
11:30 AM - 12:30 PM
Room: Salle de Conférences
Lately, more and more of the attention of the mathematical GR communities is being given to the cosmic censorship conjecture (CCC). In this context, there have been recently some studies focusing in particular on energy estimates and scattering theories in the interior of black holes. In this talk, I will discuss the results of two works on the scattering of Dirac fields in the interior of spherically symmetric charged black holes that are Reissner-Nördstrom-like, namely, the scattering between the outer event horizon and the inner Cauchy horizon. In the first paper, we show asymptotic completeness for the massive charged Dirac equation in the aforementioned interior region of a sub-extremal ((Anti-) De Sitter) Reissner-Nordström black hole. This is done by first decomposing the Dirac equation using the Newman-Penrose formalism and obtaining analytic scattering in a dynamical framework via the wave operators. The analytical results are then re-interpreted geometrically to define the trace operators. In the second paper the conformal scattering theory for the same settings is constructed and we obtain the geometrical results by directly solving the characteristic Cauchy problem using what I refer to as the 'waves re-interpretation' method