Les processus max-stables jouent un rôle fondamental dans la modélisation spatiale des événements rares, e.g., inondations, vagues de chaleur… Dans cet exposé nous allons repartir de zéro en nous intéressant à leurs représentations spectrales ; représentation qui n’est rien de plus qu'une construction probabiliste simple de cette classe de processus. Par la suite, nous nous intéresserons à la...
Pour un processus de Markov possédant un état absorbant, l'état d'équilibre est trivial. Il est donc plus intéressant de regarder le processus conditionnellement à la non-absorption. Si ce dernier converge en loi vers un équilibre, on appelle cette équilibre une distribution quasi-stationnaire (QSD). Nous verrons dans cet exposé, des critères récents pour l'existence et la convergence vers les...
On s'intéresse à un patient en rémission suivi régulièrement (par exemple par une prise de sang de contrôle des marqueurs) pour
détecter au plus tôt une éventuelle rechute. La quantité d'intérêt (par exemple le nombre de cellules cancéreuses dans le sang) est un processus continu qui n'est observé que ponctuellement et typiquement au travers d'un proxy (marqueurs). Le médecin souhaite être en...
L'estimation des modèles linéaires généralisés en grande dimension nécessite leur régularisation. Pour que le prédicteur linéaire soit interprétable, il est en outre indispensable que celui-ci soit relié à un nombre réduit de dimensions d'interprétation simple. La pénalisation LASSO permet certes de réaliser régularisation et réduction dimensionnelle, les dimensions trouvées étant les...
L'algorithme PSO (Particle Swarm Optimization) est une méta-heuristique stochastique d'optimisation introduite à la fn des années 90, généralement classée dans la famille des algorithmes génétiques. Elle est basée sur un comportement "social" de particules parcourant un domaine sur lequel on cherche à optimiser une fonction de coût. L'allure des trajectoires et le mouvement des particules ont...