12-13 November 2018
Toulouse School of Economics
Europe/Paris timezone

Optimisation par essaims particulaires : quelques résultats de convergence en loi

13 Nov 2018, 15:10
50m
Bât S, amphi MS001 (Toulouse School of Economics)

Bât S, amphi MS001

Toulouse School of Economics

Manufacture des Tabacs, 21, Allée de Brienne 31015 Toulouse Cedex 6 FRANCE

Speaker

André Mas (Inst. Montpellier)

Description

L'algorithme PSO (Particle Swarm Optimization) est une méta-heuristique stochastique d'optimisation introduite à la fn des années 90, généralement classée dans la famille des algorithmes génétiques. Elle est basée sur un comportement "social" de particules parcourant un domaine sur lequel on cherche à optimiser une fonction de coût. L'allure des trajectoires et le mouvement des particules ont donné leur nom à la méthode. La méthode d’optimisation PSO dispose de certaines caractéristiques : elle s'accommode d'espaces de recherche de grande dimension, ne nécessite pas de calcul de gradient. Mais sa convergence n'est pas assurée et elle convient surtout à des problèmes où les appels à la fonction à optimiser sont peu coûteux (le contraire du Computer Experiment).
Dans cet exposé nous nous plaçons dans le cas où PSO converge. Notre objectif est de donner des intervalles de confiance pour le point de convergence de l'algorithme. Nous sommes amenés à considérer deux situations : un cas où les particules oscillent entre un minimum local et le minimum global; et un second cas où un unique minimum global ou local est détecté, entraînant une convergence à vitesse exponentielle. Nous établissons des théorèmes centraux limites pour chaque particule dans ces deux contextes, l'asymptotique étant liée au nombre d'itérations. Nous obtenons aussi des inégalités de concentration pour tout l'essaim de particules à itération fixée. Les résultats théoriques sont étayés par des simulations.

Presentation Materials

There are no materials yet.