Speaker
Mr
Steven Dale Cutkosky
(University of Missouri)
Description
We prove that germs of analytic maps of complex analytic varieties can be made monomial by sequences of local blow ups of nonsingular analytic subvarieties in the domain and target along an arbitrary étoile. An étoile and the voûte étoilée is a generalization by Hironaka of valuations and the Zariski Riemann manifold to analytic spaces.