Focus on:
All days
Oct 11, 2016
Oct 12, 2016
Oct 13, 2016
Oct 14, 2016
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Colloque 2016 du GDR 2875, Topologie Algébrique et Applications
from
Tuesday, October 11, 2016 (11:45 AM)
to
Friday, October 14, 2016 (4:00 PM)
Monday, October 10, 2016
Tuesday, October 11, 2016
11:45 AM
RDV Amphi Lavoisier
RDV Amphi Lavoisier
11:45 AM - 11:55 AM
Room: Amphi Lavoisier
12:00 PM
Déjeuner
Déjeuner
12:00 PM - 1:20 PM
Room: Restaurant Universitaire, rue Vanmarcke
1:30 PM
Accueil
Accueil
1:30 PM - 1:55 PM
Room: Amphi Lavoisier
2:00 PM
Introduction aux ensembles simpliciaux
-
Sacha Ikonicoff
Introduction aux ensembles simpliciaux
Sacha Ikonicoff
2:00 PM - 3:15 PM
Room: Amphi Lavoisier
4:00 PM
Introduction à l'algèbre homotopique
-
Rigel Apolonio JUAREZ OJEDA
Introduction à l'algèbre homotopique
Rigel Apolonio JUAREZ OJEDA
4:00 PM - 5:15 PM
Room: Amphi Lavoisier
Wednesday, October 12, 2016
8:30 AM
Accueil
Accueil
8:30 AM - 8:55 AM
Room: Amphi Lavoisier
9:00 AM
Autour du théorème B de Quillen
-
Ieke Moerdijk
Autour du théorème B de Quillen
(Topologie algébrique et applications)
Ieke Moerdijk
9:00 AM - 10:15 AM
Room: Amphi Lavoisier
Pour un foncteur entre petites catégories, le théorème B de Quillen donne un critère pratique pour déterminer la fibre homotopique de l'application entre espaces classifiants de ces catégories. Dans cette série de trois conférences, je vais donner une démonstration d'une version plus générale, pour un foncteur entre catégories simpliciales. Cette version plus forte a comme applications immédiates plusieurs théorèmes importants, entre autres un théorème de descente pour des espaces simpliciaux, une construction d'univers univalents en théorie homotopique des types, et, last but not least, une démonstration efficace du "group completion theorem" et du théorème de périodicité de Bott. Si le temps nous le permet, j'expliquerai comment les méthodes s'appliquent dans le contexte de la théorie d'homotopie des préfaisceaux simpliciaux, utilisés par exemple en théorie d'homotopie $A^1$.
10:20 AM
Café
Café
10:20 AM - 10:40 AM
10:40 AM
Espaces d'intersection, homotopie rationnelle et structures de Hodge mixte
-
Mathieu Klimczak
(
Université de Nantes
)
Espaces d'intersection, homotopie rationnelle et structures de Hodge mixte
(Topologie algébrique et applications)
Mathieu Klimczak
(
Université de Nantes
)
10:40 AM - 11:30 AM
Room: Amphi Lavoisier
La théorie des espaces d'intersection permet de restaurer la dualité de Poincaré pour des espaces à singularités isolées, par exemple les variétés algébriques projectives complexes à singularités isolées. Etant donnée un tel espace à singularités isolées $X$, on peut lui associer une famille d'espaces topologiques $I^{\overline{p}}X$, ses espaces d'intersection, vérifiant une "dualité de Poincaré généralisée". Si $X$ est une variété algébrique projective complexe à singularités isolées, alors la cohomologie rationnelle de ses espaces d'intersection peut être munie d'une structure de Hodge mixte canonique, alors même que ces espaces ne sont pas des variétés algébriques projectives complexes à singularités isolées. Après avoir expliqué la construction des espaces d'intersection, on montrera via des techniques d'homotopie rationnelle comment définir ses structures de Hodge mixtes. On utilisera ces dernières pour obtenir des résultats de formalité.
11:40 AM
A small projective resolution of complex K-theory
-
Greg Arone
A small projective resolution of complex K-theory
(Topologie algébrique et applications)
Greg Arone
11:40 AM - 12:30 PM
Room: Amphi Lavoisier
Around 1982 Nick Kuhn proved that the symmetric powers of the sphere spectrum give rise to a minimal projective resolution of $HZ$. He then asked if there were other interesting examples of small projective resolutions of spectra, in particular of spectra like $bo$ or $bu$. In this talk I will show how to construct a small projective resolution of the connective K-theory spectrum $bu$. Our resolution has many similarities to the classic one that arises from the symmetric powers filtration. We give a unified proof of exactness of both resolutions, that is different from Kuhn’s proof. A key ingredient in our proof is a vanishing result for the Bredon homology of the complex of partitions and the complex of direct-sum decompositions. Joint work with Kathryn Lesh.
12:40 PM
Déjeuner
Déjeuner
12:40 PM - 2:20 PM
Room: Restaurant Universitaire, rue Vanmarcke
2:20 PM
Équation de Yang-Baxter, tableaux de Young, factorisations de groupes
-
Victoria Lebed
(
Trinity College Dublin
)
Équation de Yang-Baxter, tableaux de Young, factorisations de groupes
(Topologie algébrique et applications)
Victoria Lebed
(
Trinity College Dublin
)
2:20 PM - 3:10 PM
Room: Amphi Lavoisier
On commencera par des généralités sur la cohomologie des ensembles pré-cubiques et, plus particulièrement, des solutions idempotentes de l'équation de Yang-Baxter. Cette théorie générale nous permettra de fabriquer des complexes relativement petits calculant la cohomologie de Hochschild de certaines algèbres associatives. On s'intéressera à deux applications : 1) Pour les tableaux de Young munis du produit de Knuth, on simplifiera et précisera les calculs cohomologiques apparus au cours du récent renouveau de l'intérêt envers ces structures. 2) On établira une forme faible de la formule de Künneth pour les groupes factorisés.
3:20 PM
A generalized Blakers-Massey Theorem
-
Georg Biedermann
(
LAGA, Paris 13
)
A generalized Blakers-Massey Theorem
(Topologie algébrique et applications)
Georg Biedermann
(
LAGA, Paris 13
)
3:20 PM - 4:10 PM
Room: Amphi Lavoisier
(joint with M. Anel, E. Finster, and A. Joyal) We present a generalized version of the Blakers-Massey Theorem in the context of $\infty$-topoi. The proof refines a proof of the classical theorem by Finster and Lumsdaine given in the language of Homotopy Type Theory and its "re-engineered" version by Rezk. The main tools are certain factorization systems (modality) and homotopical descent. The classical theorem and a recent generalization due to Chacholski-Scherer-Werndli are easy consequences. As an application we prove a conjecture by Goodwillie: a Blakers-Massey Theorem for the calculus of homotopy functors. From it we obtain an independent proof of the fact that homogeneous functors deloop.
4:20 PM
Café
Café
4:20 PM - 4:40 PM
4:40 PM
Minimal models for operadic algebras over arbitrary rings
-
Fernando Muro
Minimal models for operadic algebras over arbitrary rings
(Topologie algébrique et applications)
Fernando Muro
4:40 PM - 5:30 PM
Room: Amphi Lavoisier
The classical theory of minimal models for operadic algebras works when they have projective homology, e.g. if they are defined over a field. In the associative case, Sagave extended the theory to arbitrary algebras over any ring by means of a new kind of structure which merges A-infinity algebras and projective resolutions, called derived A-infinity algebras. We will endow the category of derived A-infinity algebras with a homotopical structure equivalent to that of differential graded algebras. We will show that, in this new homotopy category, any differential graded algebra is equivalent to its minimal model. Moreover, we will extend all this beyond the associative setting by using Koszul duality results from Maes's thesis, which extend work of Livernet-Roitzheim-Whitehouse.
Thursday, October 13, 2016
9:00 AM
Autour du théorème B de Quillen, II
-
Ieke Moerdijk
Autour du théorème B de Quillen, II
Ieke Moerdijk
9:00 AM - 10:15 AM
Room: Amphi Figlarz
Voir le résumé principal.
10:20 AM
Café
Café
10:20 AM - 10:40 AM
10:40 AM
Le modèle de Lambrechts–Stanley des espaces de configuration
-
Najib Idrissi
(
Université Lille 1
)
Le modèle de Lambrechts–Stanley des espaces de configuration
(Topologie algébrique et applications)
Najib Idrissi
(
Université Lille 1
)
10:40 AM - 11:30 AM
Room: Amphi Figlarz
Nous prouvons la validité sur R d'un modèle en CDGA pour les espaces de configurations des variétés simplement connexes dont la caractéristique d'Euler est nulle, répondant ainsi à une conjecture de Lambrechts et Stanley. Cela entraîne que le type d'homotopie réel de ces espaces de configuration ne dépend que d'un modèle à dualité de Poincaré de la variété. En nous fondant sur la preuve de Kontsevich de la formalité des opérades des petits disques, nous prouvons également que le modèle est compatible avec l'action de l'opérade de Fulton--MacPherson quand la variété est parallélisée en utilisant un complexe de graphes étiquetés. Nous utilisons ce résultat plus précis pour obtenir un complexe calculant l'homologie de factorisation. Référence : http://arxiv.org/abs/1608.08054
11:40 AM
The loop space of a p-local group
-
Ran Levi
The loop space of a p-local group
(Topologie algébrique et applications)
Ran Levi
11:40 AM - 12:30 PM
Room: Amphi Figlarz
The homotopy type of the loop space on the p-complete classifying space of a finite group was studied by myself and a few other researchers since the early 90s. The homology of such loop spaces is of particular interest from the homotopy theoretic point of view, as it exhibits a rather rigid behaviour, yet not very well understood. From the algebraic point of view, works of Benson-Greenlees-Iyengar suggest the loop space homology of p-completed classifying spaces provides interesting examples of much more general phenomena. In his 2009 paper "An algebraic model for chains on $\Omega BG^\wedge_p$", Benson showed that the homology can be defined purely algebraically through what he named a "squeezed resolution" for the group in question. The theory of p-local finite and compact groups allows one to study homotopy theoretic and algebraic properties of p-completed classifying spaces in a very general context, and where a genuine group is not necessarily available. Thus the question that arises naturally is whether one can construct an analog of a squeezed resolution for p-local groups. The answer to this question turns out to be positive in a more general sense. In an ongoing project with Broto and Oliver we show that for any small category $\mathcal{C}$ satisfying certain conditions, the homology of the loop space of its p-completed nerve can be understood algebraically by means of a squeezed resolution. In this talk I will present the construction of squeezed resolutions in this context and discuss some of their properties. I will also relate this to a number of interesting homotopy theoretic questions.
12:40 PM
Déjeuner
Déjeuner
12:40 PM - 2:20 PM
Room: Restaurant Universitaire, rue Vanmarcke
2:20 PM
Intersections complètes
-
Jean Fasel
(
Université Grenoble-Alpes
)
Intersections complètes
(Topologie algébrique et applications)
Jean Fasel
(
Université Grenoble-Alpes
)
2:20 PM - 3:10 PM
Room: Amphi Figlarz
Soit X=Spec(R) une variété affine lisse sur un corps k, et soit Y une sous-variété fermée correspondant à un idéal I. Il est en général difficle de donner un ensemble de générateurs de I, même dans le cas où X est un espace affine. Néanmoins, le lemme de Nakayama montre que le nombre de générateurs de I est au moins égal au nombre de générateurs de son fibré conormal et au plus égal à ce nombre plus 1. Dans cet exposé, nous utiliserons des idées “topologiques” au sens large pour déterminer le nombre de générateurs de I, donnant au passage une réponse positive à une vieille conjecture de Murthy.
3:20 PM
Sur les K-théories de Morava des 2-groupes abéliens élémentaires
-
Le Chi Quyet NGUYEN
(
LAREMA - Angers
)
Sur les K-théories de Morava des 2-groupes abéliens élémentaires
(Topologie algébrique et applications)
Le Chi Quyet NGUYEN
(
LAREMA - Angers
)
3:20 PM - 4:10 PM
Pour chaque nombre premier p et chaque entier naturel n, il existe une théorie cohomologique complexe orientée K(n) que l'on appelle la n-ième K-théorie de Morava modulo p. Dans cet exposé, on étudie le cas p=2. On utilise des techniques d'Atiyah-Segal et la loi de groupe formel associée à K(n) pour obtenir une description du foncteur $V \mapsto K(n)^*(BV^{\sharp})$ où V est un espace vectoriel de dimension finie quelconque, et $\sharp$ désigne le dual linéaire. Pour n=2, on en déduit que ce foncteur est analytique. Il correspond alors à un module instable à gauche d'après le dictionnaire donné par Henn-Lannes-Schwartz. Le dual linéaire de ce module est détecté dans la structure d'anneau de Hopf de l'homologie de l'Omega-spectre qui représente la théorie de Morava.
4:20 PM
Café
Café
4:20 PM - 4:40 PM
4:40 PM
Topological coHochschild homology
-
Kathryn Hess Bellwald
(
EPFL
)
Topological coHochschild homology
(Topologie algébrique et applications)
Kathryn Hess Bellwald
(
EPFL
)
4:40 PM - 5:30 PM
Room: Amphi Figlarz
(Joint work with Brooke Shipley) Topological Hochschild homology (THH) is a version for ring spectra of classical Hochschild homology of rings, the importance of which is due primarily to its close connection to algebraic K-theory, mediated by the Dennis trace map. In this talk, I will introduce a dual version of THH for coalgebra spectra, called topological co-Hochschild homology (coTHH), which is a spectral version of coHochschild homology (coHH) of dg coalgebras, and explain its relationship to both THH and algebraic K-theory, also expressed in terms of a trace map. As a warm up, I will begin by reviewing coHH of dg coalgebras, with an extension to dg cocategories, and will then present new results in the dg case. To conclude, I will present recent computational results fo coTHH, due to Bohmann, Gerhardt, Høgenhaven, Shipley, and Ziegenhagen.
7:30 PM
Dîner de Gala
Dîner de Gala
7:30 PM - 9:30 PM
Room: Restaurant Vert Galant
Friday, October 14, 2016
9:00 AM
Autour du théorème B de Quillen, III
-
Ieke Moerdijk
Autour du théorème B de Quillen, III
Ieke Moerdijk
9:00 AM - 10:15 AM
Room: Amphi Haüy
Voir le résumé principal.
10:20 AM
Café
Café
10:20 AM - 10:40 AM
10:40 AM
Eilenberg-MacLane mapping algebras and higher distributivity
-
Martin Frankland
(
Universität Osnabrück
)
Eilenberg-MacLane mapping algebras and higher distributivity
(Topologie algébrique et applications)
Martin Frankland
(
Universität Osnabrück
)
10:40 AM - 11:30 AM
Room: Amphi Haüy
Primary cohomology operations are given by homotopy classes of maps between Eilenberg-MacLane spectra. Composition of such maps is bilinear up to homotopy, but not strictly: it is strictly linear in one variable and linear up to coherent homotopy in the other variable. In joint work with Hans-Joachim Baues, we introduce the notion of weakly bilinear mapping theory to encode this structure. I will describe the higher distributivity laws satisfied by this structure, along with some examples in mod 2 cohomology.
11:40 AM
Topological complexity of configuration spaces
-
Mark Grant
Topological complexity of configuration spaces
(Topologie algébrique et applications)
Mark Grant
11:40 AM - 12:30 PM
Room: Amphi Haüy
Topological complexity is a numerical homotopy invariant whose definition (due to M. Farber) was inspired by the motion planning problem in Robotics. It has enjoyed much recent attention from homotopy theorists, partly due to its potential applicability, and partly due to its close resemblance to another more classical invariant, the Lusternik-Schnirelmann category. Classical configuration spaces (whose points are tuples of pairwise distinct points in some manifold, either ordered or unordered) are a natural class of spaces to consider, from either the homotopy theory or the Robotics point of view. We will survey some known results about their topological complexity, some of which were obtained in recent joint work with D. Recio-Mitter. The bounds we employ depend only on the fundamental group, allowing appealing geometric arguments using braids.
12:40 PM
Déjeuner
Déjeuner
12:40 PM - 2:00 PM
Room: Restaurant Universitaire, rue Vanmarcke
2:00 PM
Bifibrations of model categories
-
Pierre Cagne
(
Univeristé Paris 7
)
Bifibrations of model categories
(Topologie algébrique et applications)
Pierre Cagne
(
Univeristé Paris 7
)
2:00 PM - 2:50 PM
Room: Amphi Haüy
In this talk, I will explain how to endow the total category $\mathcal E$ of a well- behaved Grothendieck bifibration $\mathcal E \to \mathcal B$ with a structure of a model category when both the basis $\mathcal B$ and all fibers $\mathcal E_b$ of the bifibration are model categories. The motivating example is the well-known Reedy model structure on a diagram category $[\mathcal R,\mathcal M]$. The crucial step in its construction by transfinite in-duction lies in the successor case, which is usually handled by reasoning on latching and matching functors. A first observation is that those functors define a Grothendieck bifibration on the restriction functor $[\mathcal R_{\lambda+1},\mathcal M] \to [\mathcal R_\lambda,\mathcal M]$ where $\mathcal R_\lambda$ denotes the full subcategory of $\mathcal R$ whose objects have degree less than $\lambda$. Unfortunately, this bifibration fails to fulfil the conditions of application of existing theorems in the litterature ([1], [2]), which would have allowed to lift the model structure from the base category $\mathcal B=[\mathcal R_\lambda,\mathcal M]$ to the total category $\mathcal E=[\mathcal R_{\lambda+1},\mathcal M]$. I will explain how to relax the hypotheses appearing in [1] and [2] by focusing on (co)cartesian lifts over acyclic (co)fibrations rather than over weak equivalences. This idea leads us to a simple and elegant condition for our new construction: some commutative squares in the base category are required to satisfy a homotopical version of the Beck-Chevalley condition. To conclude, I will apply the result to the Reedy construction and its generalizations ([3], [4]). --- [1] Stanculescu, A.E., Bifibrations and weak factorization systems, Applied Categorical Structures, 20(1):19-30, 2012 [2] Harpaz, Y, and Prasma, M., The Grothendieck construction for model categories, Advances in Mathematics, 218:1306-1363 (August 2015) [3] Berger, C., and Moerdijk, I., On an extension of the notion of Reedy category, Mathematische Zeitschrift, 269(3):977-1004, December 2011 [4] Shulman, M., Reedy categories and their generalizations, arXiv preprint, arXiv:1507.01065 (2015)
3:00 PM
Local structure of finite groups and their p-completed classifying spaces
-
Bob Oliver
Local structure of finite groups and their p-completed classifying spaces
(Topologie algébrique et applications)
Bob Oliver
3:00 PM - 3:50 PM
Room: Amphi Haüy
I plan to describe the close connection between the homotopy theoretic properties of the $p$-completed classifying space of a finite group $G$ and the $p$-local group theoretic properties of $G$. One way in which this arises is in the following theorem originally conjectured by Martino and Priddy: for finite groups $G$ and $H$, $BG{}^\wedge_p\simeq BH{}^\wedge_p$ if and only if $G$ and $H$ have the same $p$-local structure (the same conjugacy relations among $p$-subgroups). Another involves a description, in terms of the $p$-local properties of $G$, of the group $\mathrm{Out}(BG{}^\wedge_p)$ of homotopy classes of self equivalences of $BG{}^\wedge_p$. After describing the general results, I'll give some examples and applications of both of these, especially in the case where $G$ and $H$ are simple Lie groups over finite fields.