11-14 octobre 2016
Fuseau horaire Europe/Paris

Espaces d'intersection, homotopie rationnelle et structures de Hodge mixte

12 oct. 2016 à 10:40
50m
Amphi Lavoisier ()

Amphi Lavoisier

Contributed talk Topologie algébrique et applications

Orateur

Dr Mathieu Klimczak (Université de Nantes)

Description

La théorie des espaces d'intersection permet de restaurer la dualité de Poincaré pour des espaces à singularités isolées, par exemple les variétés algébriques projectives complexes à singularités isolées. Etant donnée un tel espace à singularités isolées $X$, on peut lui associer une famille d'espaces topologiques $I^{\overline{p}}X$, ses espaces d'intersection, vérifiant une "dualité de Poincaré généralisée". Si $X$ est une variété algébrique projective complexe à singularités isolées, alors la cohomologie rationnelle de ses espaces d'intersection peut être munie d'une structure de Hodge mixte canonique, alors même que ces espaces ne sont pas des variétés algébriques projectives complexes à singularités isolées. Après avoir expliqué la construction des espaces d'intersection, on montrera via des techniques d'homotopie rationnelle comment définir ses structures de Hodge mixtes. On utilisera ces dernières pour obtenir des résultats de formalité.

Auteur principal

Dr Mathieu Klimczak (Université de Nantes)

Documents de présentation

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×