20–24 janv. 2025
Institut Henri Poincaré
Fuseau horaire Europe/Paris

Exceptional complex dual pair correspondences

24 janv. 2025, 10:30
50m
Amphithéâtre Hermite (Institut Henri Poincaré)

Amphithéâtre Hermite

Institut Henri Poincaré

11 rue Pierre et Marie Curie 75005 Paris

Orateur

Hung Yean Loke (National University of Singapore)

Description

Let ${\mathrm{E}}_n({\mathbb{C}})$ denote the connected complex Lie group of type ${\mathrm{E}}_n$ for $n = 6, 7$. These two groups contain the following reductive pairs:
\begin{align}
T_1({\mathbb{C}}) \times {\mathrm{Spin}}(10,{\mathbb{C}}) & \subset {\mathrm{E}}_6({\mathbb{C}}), \cr
T_2({\mathbb{C}}) \times {\mathrm{Spin}}(8,{\mathbb{C}}) & \subset {\mathrm{E}}_6({\mathbb{C}}), \cr
T_1({\mathbb{C}}) \times {\mathrm{E}}_6({\mathbb{C}}) & \subset {\mathrm{E}}_7({\mathbb{C}}),
\end{align} where $T_1({\mathbb{C}})$ and $T_2({\mathbb{C}})$ are complex tori of dimensions 1 and 2 respectively. In this talk, I will describe the dual pair correspondences arising from the minimal representations of ${\mathrm{E}}_6({\mathbb{C}})$ and ${\mathrm{E}}_7({\mathbb{C}})$. These are joint projects with Edmund Karasiewicz and Gordan Savin.

Documents de présentation

Aucun document.