18-21 July 2016
Université de Bordeaux
Europe/Paris timezone


Stefano Morra

21 Jul 2016, 15:00
Université de Bordeaux

Université de Bordeaux


Let F/Q be a number field where p is unramified and r : Gal(F /F ) → GL_3(Q_p ) a
continuous Galois representation. We assume that r is automorphic for U(3) and the
p-adic local parameters of r at p are tamely potentially crystalline, with Hodge-Tate
weights (0,1,2).
The local/global compatibility conjecture in the p-adic local Langlands correspon-
dence predicts that the r-eigenspace in the integral ́etale cohomology on the adelic
points of U(3) with infinite level at p, should only depend on the p-adic local para-
meter associated to r, in some explicit way.
In this talk we prove the local/global compatibility conjecture when considering a
tame level at p, under mild technical hypotheses on the mod p-reduction of r. More
precisely, we show that the integral structure cut out by the global ́etale cohomology
on the tame ́etale local system giving rise to r depends only on the p-adic local
The proof relies on the explicit construction of local Galois deformation rings in
dimension three, the description of their special fiber in automorphic terms via the
Breuil-M ́ezard conjecture, a new technique (which is a mixture of both global and
local methods) to compute the mod p reduction of Z_p -lattices in tame K-types.
This is a joint work with Dan Le, Viet-Bao Le Hung and Brandon Levin.

Presentation Materials

There are no materials yet.
Building timetable...