Computational and statistical trade-offs in learning

Europe/Paris
Salle de Conférences Marilyn et James Simons (Le Bois-Marie)

Salle de Conférences Marilyn et James Simons

Le Bois-Marie

35, route de Chartres 91440 Bures-sur-Yvette
Description

COMPUTATIONAL AND STATISTICAL TRADE-OFFS IN LEARNING

Organized by: Sylvain Arlot (Université Paris-Sud, Paris-Saclay), Francis Bach (INRIA Paris), Alain Celisse (Université de Lille 1)

This workshop focuses on the computational and statistical trade-offs arising in various domains (optimization, statistical/machine learning).
This is a challenging question since it amounts to optimize the performance under limited computational resources, which is crucial in the large-scale data context.
One main goal is to identify important ideas independently developed in some communities that could benefit the others.


Speakers :

Pierre Alquier (ENSAE, Paris-Saclay)
Alexandre d'Aspremont (D.I., CNRS/ENS Paris)
Quentin Berthet (DPMMS, Cambridge Univ., UK)
Alain Celisse (Université de Lille 1)
Rémi Gribonval (INRIA, Rennes)
Emilie Kaufmann (CNRS, Lille)
Vianney Perchet (CREST, ENSAE Paris-Saclay)
Garvesh Raskutti (Wisconsin Institute for Discovery, Madison, USA)
Ohad Shamir (Weizmann Institute, Rehovot, Israel)
Silvia Villa (Istituto Italiano di Tecnologia, Genova & MIT, Cambridge, USA)

 

logos

Abstracts
Poster
Participants
    • mardi 22 mars
      • 09:00
        Café d'accueil
      • 1
        Ohad Shamir
        Trade-offs in Distributed Learning
        Transparents
      • 2
        Alain Celisse
        Using kernels to detect abrupt changes in time series
        Transparents
      • 12:00
        Déjeuner
      • 3
        Alexandre d'Aspremont
        Renegar's Condition Number and Compressed Sensing Performance
        Transparents
      • 4
        Emilie Kaufmann
        Optimal Best Arm Identification with Fixed Confidence
        Transparents
      • 15:30
        Pause café
      • 5
        Vianney Perchet
        Highly-Smooth Zero-th Order Online Optimization
        Transparents
    • mercredi 23
      • 09:00
        Café d'accueil
      • 6
        Garvesh Raskutti
        Algorithmic and statistical perspectives of randomized sketching for ordinary least-squares
        Transparents
      • 7
        Pierre Alquier
        On the Properties of Variational Approximations of Gibbs Posteriors
        Transparents
      • 12:00
        Déjeuner
      • 8
        Quentin Berthet
        Trade-offs in Statistical Learning
        Transparents
      • 9
        Remi Gribonval
        Projections, Learning, and Sparsity for Efficient Data Processing
        Transparents
      • 15:30
        Pause café
      • 10
        Silvia Villa
        Generalization properties of multiple passes stochastic gradient method
        Transparents