Focus on:
All days
May 9, 2023
May 10, 2023
May 11, 2023
May 12, 2023
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Secant v. Cactus
from
Tuesday, May 9, 2023 (9:00 AM)
to
Friday, May 12, 2023 (5:00 PM)
Monday, May 8, 2023
Tuesday, May 9, 2023
9:00 AM
Welcome
Welcome
9:00 AM - 9:30 AM
Room: Building 1R3, Amphitheater Schwartz
9:30 AM
Basics of border apolarity
-
Weronika Buczynska
(
University of Warsaw
)
Basics of border apolarity
Weronika Buczynska
(
University of Warsaw
)
9:30 AM - 10:30 AM
Room: Salle Pellos 207, 1R2, 2nd floor
The aim of my talk is to introduce the border apolarity idea toegether with the tools necessary for its proof. I will recall the setting of border apolarity as it was done my joint paper with Jarek Buczynski. There we have formulated a version of apolarity lemma for a toric variety embedded via very ample line bundle and have proved it in the characteristic zero case. The main tool is to use the multigraded Hilbert scheme of ideals in the Cox ring of the variety X with fixed Hilbert function. In the context of calculating border rank the most interesting is the component containing ideals of the subsets of r points in general position in X. Finally, when there is a group action on X, and the point (tensor, polynomial) is a fixed point of this action, we get an even more useful version of the apolarity lemma. I will give some examples of how one can use the border apolarity theorem to calculate the border rank of a tensor or polynomial.
10:30 AM
Coffee break
Coffee break
10:30 AM - 11:00 AM
Room: Building 1R3, Amphitheater Schwartz
11:00 AM
Cactus rank and varieties
-
Jarek Buczynski
(
IMPAN Warsaw
)
Cactus rank and varieties
Jarek Buczynski
(
IMPAN Warsaw
)
11:00 AM - 12:00 PM
Room: Salle Pellos 207, 1R2, 2nd floor
The cactus variety of a projective variety X is a version of the secant variety, where we take into account the linear spans of all finite subschemes of bounded length, not only the smooth ones or smoothable ones. I will discuss the definitions and basic properties of cactus rank and cactus varieties, with a particular focus on why they are relevant as an obstruction to study secant varieties. I will also explain the what is the Hilbert scheme of points and what we know about its components. Finally I will relate the components of the cactus variety (typically, one of these components would be the secant variety) to components of Hilbert scheme.
2:30 PM
Ideal enumeration for border apolarity
-
Austin Conner
(
Harvard Universty
)
Ideal enumeration for border apolarity
Austin Conner
(
Harvard Universty
)
2:30 PM - 3:30 PM
Room: Salle Picard 129, 1R2, 1st floor
The first step in lower bounding the border rank of a tensor or polynomial with border apolarity is to enumerate all ideals contained in the annihilator with Hilbert series equal to the Hilbert series of an ideal of general points. The second step requires determining whether any such ideal may be deformed to an ideal of points. Typically, one simplifies these questions by asking if there are any such ideals which are additionally fixed under a given solvable group of symmetries of the tensor or polynomial. In this talk I discuss the challenges involved in the ideal enumeration step. At a high level, the ideals are enumerated multigraded component by component, but concrete questions arise. How should partially constructed ideals be represented? How are the symmetries of the tensor or polynomial handled? How do we proceed when the answer contains positive dimensional families? Furthermore, I anticipate the successful application of both steps of border apolarity will as much as possible interleave checks for deformability of partially built ideals into the early steps of enumeration. I hope this discussion will make clear the context in which tests for deformability will need to be applied.
3:30 PM
Coffee break
Coffee break
3:30 PM - 4:00 PM
Room: Building 1R3, Amphitheater Schwartz
4:00 PM
Counterexamples for the slice technique for cactus rank and border cactus rank
-
Filip Rupniewski
(
Universität Bern
)
Counterexamples for the slice technique for cactus rank and border cactus rank
Filip Rupniewski
(
Universität Bern
)
4:00 PM - 5:00 PM
Room: Salle Picard 129, 1R2
The slice technique is a tool which let use to translate the question about rank (or border rank) of a tensor in to the analogue question about the subspace spanned by tensors of a smaller order. The technique works in the case of a rank and border rank, but not for cactus and border cactus rank. Gesmundo, Oneto and Ventura gave an example of a family of forms such that their simultaneous cactus rank cannot be read as the cactus rank of tensor living in a bigger space. With a help of Multigraded Cactus Apolarity Lemma we provide a simpler one. We also show the minimal example of a tensor $p$ in $C^N \otimes Sym^d(C^n)$ with a different border cactus rank than the border cactus rank of $p(C^N*)$.
Wednesday, May 10, 2023
9:30 AM
Algorithms for rank and cactus decomposition of polynomials 1
-
Daniel Taufer
(
KU Leuven
)
Algorithms for rank and cactus decomposition of polynomials 1
Daniel Taufer
(
KU Leuven
)
9:30 AM - 10:30 AM
Room: Building 1R3, Amphitheater Schwartz
In this talk and the next one we will revise the algorithm for polynomial decomposition originally proposed by Brachat-Comon-Mourrain-Tsidgaridas and we will show how we can improve it. Then we will see how certain modifications to the algorithm can lead to a cactus decomposition.
10:30 AM
Coffee break
Coffee break
10:30 AM - 11:00 AM
Room: Building 1R3, Amphitheater Schwartz
11:00 AM
Algorithms for rank and cactus decomposition of polynomials 2
-
Alessandra Bernardi
(
Universita di Trento
)
Algorithms for rank and cactus decomposition of polynomials 2
Alessandra Bernardi
(
Universita di Trento
)
11:00 AM - 12:00 PM
Room: Building 1R3, Amphitheater Schwartz
2:30 PM
Rank algorithms, Hilbert functions and non-saturated ideals
-
Fulvio Gesmundo
(
Saarland Universität
)
Rank algorithms, Hilbert functions and non-saturated ideals
Fulvio Gesmundo
(
Saarland Universität
)
2:30 PM - 3:30 PM
Room: Building 1R3, Amphitheater Schwartz
Some of the classical tensor decomposition algorithms are based on the ability of solving particular zero-dimensional polynomial system, defining the set of points of the decomposition. Generalized eigenvalue methods can be used for this task, and their complexity is controlled by the regularity of certain associated ideals, which are often non-saturated. We determine these regularity values in a restricted range, drawing connections to classical problems in commutative algebra, such as the Minimal Resolution Conjecture and the Ideal Generation Conjecture. This is based on joint work with Leonie Kayser and Simon Telen.
3:30 PM
Coffee break
Coffee break
3:30 PM - 4:00 PM
Room: Building 1R3, Amphitheater Schwartz
4:00 PM
Border rank bounds for $GL_n$-invariant tensors arising from spaces of matrices of constant rank
-
Derek Wu
(
Texas A&M University
)
Border rank bounds for $GL_n$-invariant tensors arising from spaces of matrices of constant rank
Derek Wu
(
Texas A&M University
)
4:00 PM - 5:00 PM
Room: Building 1R3, Amphitheater Schwartz
One measure of the complexity of a tensor is its border rank. Finding the border rank of a tensor, or even bounding it, is a difficult problem that is currently an area of active research, as several problems in theoretical computer science come down to determining the border ranks of certain tensors. For a class of $GL(V)$-invariant tensors lying in a $GL(V)$-invariant space $V\otimes U\otimes W$, where $U$ and $W$ are $GL(V)$-modules, we can take advantage of $GL(V)$-invariance to find border rank bounds for these tensors. I discuss a special case where these tensors correspond to spaces of matrices of constant rank.
8:00 PM
Conference Dinner
Conference Dinner
8:00 PM - 6:20 PM
Thursday, May 11, 2023
9:30 AM
Border apolarity 2
-
Weronika Buczynska
(
University of Warsaw
)
Border apolarity 2
Weronika Buczynska
(
University of Warsaw
)
9:30 AM - 10:30 AM
Room: Building 1R3, Amphitheater Schwartz
10:30 AM
Coffee break
Coffee break
10:30 AM - 11:00 AM
Room: Building 1R3, Amphitheater Schwartz
11:00 AM
Quot schemes and varieties of commuting matrices
-
Klemen Sivic
(
University of Ljubljana
)
Quot schemes and varieties of commuting matrices
Klemen Sivic
(
University of Ljubljana
)
11:00 AM - 12:00 PM
Room: Building 1R3, Amphitheater Schwartz
Let $C_n(M_d)$ denote the affine variety of all $n$-tuples of commuting $d\times d$ matrices. The ADHM construction relates these varieties to Quot schemes, and in particular to Hilbert schemes. On the more applied side, varieties $C_n(M_d)$ are directly connected to the question whether a tensor has minimal border rank. Although $C_n(M_d)$ is usually reducible for $n>2$ and $d>3$, very few irreducible components are known. In the talk we classify irreducible components for small $d$ and all $n$. Moreover, we show that $C_n(M_d)$, viewed as a scheme defined by the quadratic commutativity relations, has generically nonreduced components whenever $d\ge 8$ and $n\ge 4$, while it is generically reduced for $d\le 7$. Our results give the corresponding results for Quot schemes of points. In particular, the Quot scheme parametrizing degree 8 quotients of a free module of rank 4 over polynomial ring in 4 variables has a generically nonreduced component. This is joint work with Joachim Jelisiejew.
2:30 PM
Open Problems
Open Problems
2:30 PM - 3:30 PM
Room: Salle Pellos 207, 1R2, 2nd floor
3:30 PM
Coffee break
Coffee break
3:30 PM - 4:00 PM
Room: Building 1R3, Amphitheater Schwartz
4:00 PM
On the minimal cactus rank
-
Macej Galazka
(
University of Warsaw
)
On the minimal cactus rank
Macej Galazka
(
University of Warsaw
)
4:00 PM - 5:00 PM
Room: Salle Pellos 207, 1R2, 2nd floor
I will present the study of minimal cactus rank with respect to Veronese variety, Segre variety, and Segre-Veronese variety using an approach complementary to the one taken by Blaeser and Lysikov, and Jelisiejew, Pal, and Landsberg. I will analyze the case of 14th cactus variety in more detail.
Friday, May 12, 2023
9:30 AM
Irreducibility of multigraded Hilbert schemes of points in general position in the product of projective spaces
-
Tomasz Mandziuk
(
University of Warsaw
)
Irreducibility of multigraded Hilbert schemes of points in general position in the product of projective spaces
Tomasz Mandziuk
(
University of Warsaw
)
9:30 AM - 10:30 AM
Room: Building 1R3, Amphitheater Schwartz
I will present some necessary conditions for a point of a multigraded Hilbert scheme corresponding to r points in general position in a smooth projective complex toric variaty to be in the Slip component. These criteria can be used to classify irreducible multigraded Hilbert schemes corresponding to points in general position in the product of projective spaces.
10:30 AM
Coffee break
Coffee break
10:30 AM - 11:00 AM
Room: Building 1R3, Amphitheater Schwartz
11:00 AM
Ranks of powers of quadrics
-
Cosimo Flavi
(
Universita di Firenze
)
Ranks of powers of quadrics
Cosimo Flavi
(
Universita di Firenze
)
11:00 AM - 12:00 PM
Room: Building 1R3, Amphitheater Schwartz
Determining the rank of the powers of quadratic forms is a classical problem. Many examples of special decompositions appear in the literature. We analyze this problem from a modern point of view and we give an estimate of the value of the rank. Moreover, we determine its smoothable rank and its border rank.
2:30 PM
Tensors of minimal border rank
-
J.M. Landsberg
Tensors of minimal border rank
J.M. Landsberg
2:30 PM - 3:30 PM
Room: Salle Pellos 207, 1R2, 2nd fllor
4:00 PM
Cactus rank and varieties 2
-
Jarek Buczynski
(
IMPAN Warsaw
)
Cactus rank and varieties 2
Jarek Buczynski
(
IMPAN Warsaw
)
4:00 PM - 5:00 PM
Room: Salle Pellos 207, 1R2, 2nd floor