Oct 24 – 27, 2022
Institut de Mathématiques de Toulouse
Europe/Paris timezone

Sharp regularity results for solutions of boundary value problems

Oct 26, 2022, 9:00 AM
50m
Amphithéâtre Laurent Schwartz, building 1R3 (Institut de Mathématiques de Toulouse)

Amphithéâtre Laurent Schwartz, building 1R3

Institut de Mathématiques de Toulouse

118 route de Narbonne 31062 Toulouse Cedex 9

Speaker

Corentin Audiard (Sorbonne Université)

Description

We study the well-posedness of initial boundary value problems for the linear Schrödinger equations on a half space. The boundary data lie in a (allegedly optimal) Bourgain type Sobolev space, which allows to include Neuman and transparent boundary conditions in the analysis. Strichartz estimates (in $L^2$) are obtained thanks to an explicit solution formula. In the case of Dirichlet boundary data, the regularity of solutions is obtained provided natural compatibility conditions are satisfied. The regularity results concern fractional regularity, and include the more delicate case where the initial data are in $H^{1/2}$. The proof of regularity uses an interpolation argument that can be applied to other boundary value problems.

Presentation materials