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Consider the Schrédinger equation on the half space Q = R9~! x Rt:

o+ Au=f, (x,y, 1) € RI™T x RY xR/,
Ult=0 = Up,
B(uly=o, 9y uly=0) = g

The main result is

Theoreme

For uy € H5(Q),9 € HS(RI~1 x R{), f € XS, there exists a unique CtH® solution

Corentin Audiard, LJLL BVP Schrédinger



Consider the Schrédinger equation on the half space Q = R9~! x Rt:

o+ Au=f, (x,y, 1) € RI™T x RY xR/,
Ult=0 = Up,
B(uly=o, 9y uly=0) = g

The main result is

Theoreme

For uy € H5(Q),9 € HS(RI~1 x R{), f € XS, there exists a unique CtH® solution
if B is a nice operator, the data satisfy nice compatibility conditions, and the spaces
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o+ Au=f, (x,y, 1) € RI™T x RY xR/,
Ult=0 = Up,
B(uly=o, 9y uly=0) = g

The main result is

Theoreme

For uy € H5(Q),9 € HS(RI~1 x R{), f € XS, there exists a unique CtH® solution
if B is a nice operator, the data satisfy nice compatibility conditions, and the spaces
HS, X are some ad hoc spaces.

Moreover global Strichartz estimates hold

ulles , < lluollme +[1gllws + [Ifllg=-

with2/p+d/q=d/2,p > 2
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A model case : Dirichlet boundary conditions : by Fourier(-Laplace) transform the
solution of the pure BVP satisfies

&u(n,y,7) = (Inl* + )4,
/L\’(nr 0, T) = a(TI: T)'

with
U(n,y,m) = / et hudxdt, T =8 — i, v >0
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A model case : Dirichlet boundary conditions : by Fourier(-Laplace) transform the
solution of the pure BVP satisfies

&u(n,y,7) = (Inl* + )4,
/L\’(nr 0, T) = a(TI: T)'

with
U(n,y,m) = / et hudxdt, T =8 — i, v >0
"Hence”
U= efz"\/|”l\ﬁ§7
letting v — 0,

U(n, y,8) = e VInF+og(y,6).

(where Vv is the appropriate square root).
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For general boundary conditions, the solution is still (should be) of the form
e_y\/ ‘7]‘2+5u/‘}/:\07

hence we have the Dirichlet-Neuman relation

Byu(n,0,6) = —U(y,0,6)1/Inf2 + 6.
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For general boundary conditions, the solution is still (should be) of the form
e_y\/ ‘7]‘2+5u/‘}/:\07

hence we have the Dirichlet-Neuman relation

Byu(n, 0,0) = —T(y,0,8)\/Inf? + 6.
Consider boundary conditions of the form
Bu = a(n, )Uly—o + b(n, 6)3yly-o,

then

Bu

a+by/P+s

u(n,0,6) =
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Définition (admissible boundary conditions)

The boundary conditions are said to satisfy the uniform Kreiss-Lopatinskii condition
when a, b are holomorphic, homogeneous of respective order 0, —1:

a(\n, \28) = a(n, ), and

30,8>0: a < D(B):=|a—by/In)2 +r| < B.
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Définition (admissible boundary conditions)

The boundary conditions are said to satisfy the uniform Kreiss-Lopatinskii condition
when a, b are holomorphic, homogeneous of respective order 0, —1:
a(\n, \28) = a(n, ), and

30,8>0: a < D(B):=|a—by/In)2 +r| < B.

Relevant examples :
@ Dirichlet,a=1,b=0,
@ Neuman (forced) a=0, b= 1//[nZ + ,
© Transparenta=1, b= —1/y/[n]2 + 7.

The uniform Kreiss-Lopatinskii condition ensures that it is essentially enough to treat
the Dirichlet case.
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By analogy with the Cauchy problem, we want the solution to be C;L2, it is explicitly
given

_ 1 i(x-n+8t)—y+/|n|2+675
u(x,y,t) = W/]Rd—1 /Re g(n,d)dsdn.
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By analogy with the Cauchy problem, we want the solution to be C;L2, it is explicitly
given

1 . 2.5~
He 1 i(x-n+8t)—y/|n2+6 8)dddn.
u(x,y,t) (27)9/2 /]Rd—1 ./Re 9(n,9) n
Consider only the part of the integral where |n|* +§ < 0, and set ¢ = \/~[n[2 4,

1 i(xn+y€)—i(In|2+€2)tg 2 g2
— —Ipl2 —€?)2
(@n)i2 /RH /M g(n, —nl® — &%) 2¢ dedn

‘ = e F 1 (269(n, P — €)1ex0) ‘

This part is exactly the Schrédinger evolution operator for a Cauchy problem, hence is
C: L2 iff the corresponding initial condition is L2.

Corentin Audiard, LJLL BVP Schrodinger



FS

The space H°(RY) is

{aess [ a.0)/Infe + slans < oo
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Définition
The space H°(RY) is

{g e s’ [ 9.0/l -+ oldnds < oo}

More generally, 5 is

{aes's [ 8000)/Infe+ 6l +161)°ands < oo

For the amateurs, 7{° is related to Bourgain spaces, #° = X7 , N X2/2+1/4’ it

corresponds to functions such that e=2"g e H!/*H$ n H,S/2“/4L§.
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Various properties of 5 spaces are easily obtained :
@ HS(I x RI~1), H5(/ x RY~T) are defined the usual way,
@ There exists explicit extension operators,
@ The trace at fixed t is continuous HS(R; x RI—1) — Hs—1/2(RA—1),
@ There holds [HS1, H%2]y = HI%2+(1=0)s1
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Various properties of 5 spaces are easily obtained :

@ HS(I x RI~1), H5(/ x RY~T) are defined the usual way,
@ There exists explicit extension operators,
@ The trace at fixed t is continuous HS(R; x RI—1) — Hs—1/2(RA—1),
o There holds [151, H%]y = HO%+(1=0)s1,
1/2

@ But the critical case [HO,H‘]1/2 is (as always) more subitle, it defines the
space, which involves the condition (when / = R*)

oo efim’ 2
/ /d 1 %dxdt < 0.
0 RA—
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The linear problem is simply solved by superposition, solving the Cauchy problem (with
trace estimates), then the boundary value problem:

iOv + Av =f
v T y)eRY < wli—g =0, (x,y) e R~ x RF.

{ iow + Aw = 0,
Vim0 = Uo,
-0 = th wlaq = g — Vl|sa-
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trace estimates), then the boundary value problem:

iow + Aw = 0,
(xy)eR?, { wji_g=0, (x,y) e R~ x RF.

{ iOv + Av = f,
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V]i—o = Uo,

Compatibility conditions
For general (smooth) ug, g, we do not have g — v|sq ¢ M as soonas s > 1/2,
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First order compatibility condition
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Leads to (at best) solutions in C;H®, s < 2.
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The linear problem is simply solved by superposition, solving the Cauchy problem (with
trace estimates), then the boundary value problem:

iow + Aw = 0,
(xy)eR?, { wji_g=0, (x,y) e R~ x RF.

{ iOv + Av = f,
wlaq = g — Vl|sa-

V]i—o = Uo,

Compatibility conditions
For general (smooth) ug, g, we do not have g — v|sq ¢ M as soonas s > 1/2, it
requires the

First order compatibility condition

gli—0 = Uo|ag-

Leads to (at best) solutions in C;H®, s < 2.
The s = 1/2 sharp compatibility condition is somehwat more surprising.
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Proposition
If (ug,g) € H'/2 x #1/2, and

_ At 2
/L. uo(x, VD) — e g0 P
RI—1T xR+

t

then the solution of the IBVP is C;H'/2.

The /1 is classical, and due to the anisotropy of the equation.
Higher order compatibility conditions would involve f, for example the second order
compatibility condition d;uly—oli—o = Otuli—oly—o leads to

0t9lt=0 = i(—f|t=0 + AUp)|y=0-
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Nonlinear applications

Consequences for nonlinear problems:

Theoreme

The problem
iotu 4+ Au = |uléu,
Ul—o = Up € H,
Uy—o =g e,

has a unique maximal solution ifa < 4/(d — 2).

Less standard:

Theoreme

If moreover the data are small, the solution is global and scatters in the following
senses:

@ There exists ¢ € H} such that ||u(t) — e™b || — 0

@ There exists ¢’ € H' such that ||u(t) — ®(0,t, 9, ¢")|| 1 — O, where ® is the
linear flow associated to the data ¢, g.
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