Dec 2 – 3, 2020
Le Bois-Marie
Europe/Paris timezone

Hopf-Algebraic Renormalization of Multiple Zeta Values and their q-analogues

Dec 3, 2020, 4:30 PM
50m

Speaker

Dominique Manchon (LMBP, CNRS (UMR 6620) Université de Clermont Auvergne)

Description

After a brief introductory account, I’ll explain how a quasi-shuffle compatible definition (by no means unique) of multiple zeta values can be given for integer arguments of any sign, through Connes-Kreimer’s Hopf-algebraic renormalization. Finally, I’ll introduce the Ohno-Okuda-Zudilin model of q-analogues for multiple zeta values, describe the algebraic structure which governs it, and explain how it could open a way to the more delicate renormalization of shuffle relations.

Presentation materials