On Multiple zeta values and their q-analogues

Based on joint work with J. Castillo-Medina, K. Ebrahimi-Fard, S. Paycha, J. Singer, J. Zhao

Dominique Manchon
LMBP, CNRS-Université Clermont-Auvergne

CAP20, IHES,
December 3rd 2020
1 Multiple zeta values
 - Introduction
 - Multiple polylogarithms
 - Word description of the quasi-shuffle relations

2 Extension to arguments of any sign

3 The renormalisation group
 - A general framework
 - The MZV renormalisation group

4 q-multiple zeta values
 - The Jackson integral
 - Multiple q-polylogarithms
 - Ohno-Okuda-Zudilin q-MZVs
 - Double q-shuffle relations
Multiple zeta values are given by the following iterated series:

\[\zeta(n_1, \ldots, n_k) = \sum_{m_1 > \cdots > m_k > 0} \frac{1}{m_1^{n_1} \cdots m_k^{n_k}}. \]

The \(n_j \)'s are positive integers.

The series converges provided \(n_1 \geq 2 \). It makes also sense for \(n_1, \ldots, n_k \in \mathbb{Z} \) provided:

\[n_1 + \cdots + n_j > j \text{ for any } j \in \{1, \ldots, k\}. \]

The integer \(k \) is the depth, the sum \(w := n_1 + \cdots + n_k \) is the weight.
• Appear in the work of **L. Euler** in depths 1 and 2 (18th century),
• Some examples in higher depths by **N. Nielsen** (1904),
The **Multiple zeta function** is given by the same iterated series:

\[
\zeta(z_1, \ldots, z_k) = \sum_{m_1 > \cdots > m_k > 0} \frac{1}{m_1^{z_1} \cdots m_k^{z_k}},
\]

where the \(z_j\)'s are complex numbers.

Theorem (S. Akiyama, S. Egami, Y. Tanigawa, 2001)

The series (3) converges provided:

\[
\text{Re}(z_1 + \cdots + z_j) > j \text{ for any } j \in \{1, \ldots, k\}.
\]

It defines a holomorphic function of \(k \) complex variables in this domain, which can be meromorphically extended to \(\mathbb{C}^k\). The subvariety of singularities is given by:

\[
S_k = \{(z_1, \ldots, z_k) \in \mathbb{C}^k, \ z_1 = 1 \text{ or } z_1 + z_2 \in \{2, 1, 0, -2, -4, \ldots\} \text{ or } \exists j \in \{3, \ldots, k\}, z_1 + \cdots + z_j \in \mathbb{Z}_{\leq j}\}.
\]
Quasi-shuffle relations

The product of two MZVs is a linear combination of MZVs!
For example:

\[
\zeta(n_1)\zeta(n_2) = \sum_{m_1 > m_2 > 0} \frac{1}{m_1^{n_1} m_2^{n_2}} + \sum_{m_2 > m_1 > 0} \frac{1}{m_1^{n_1} m_2^{n_2}} + \sum_{m_1 = m_2 > 0} \frac{1}{m_1^{n_1} m_2^{n_2}}
\]

\[= \zeta(n_1, n_2) + \zeta(n_2, n_1) + \zeta(n_1 + n_2).\]
The most general quasi-shuffle relation displays as follows:

\[\zeta(n_1, \ldots, n_p)\zeta(n_{p+1}, \ldots, n_{p+q}) = \sum_{r \geq 0} \sum_{\sigma \in qsh(p, q; r)} \zeta(n_1^\sigma, \ldots, n_{p+q-r}^\sigma). \]

- Here \(qsh(p, q; r) \) stands for \((p, q)\)-quasi-shuffles of type \(r \). They are surjections
 \[\sigma : \{1, \ldots, p+q\} \rightarrow \{1, \ldots, p+q-r\} \]
 subject to \(\sigma_1 < \cdots < \sigma_p \) and \(\sigma_{p+1} < \cdots < \sigma_{p+q} \).
- \(n_j^\sigma \) stands for the sum of the \(n_r \)'s for \(\sigma(r) = j \).
- The sum above contains only one or two terms.
Integral representation and shuffle relations

MZVs have an iterated integral representation (M. Kontsevich, D. Zagier):

\[\zeta(n_1, \ldots, n_k) = \int_{0 \leq t_w \leq \cdots \leq t_1 \leq 1} \frac{dt_1}{t_1} \cdots \frac{dt_{n_1-1}}{t_{n_1-1}} \frac{dt_{n_1}}{1 - t_{n_1}} \cdots \frac{dt_{n_1+\ldots+n_{k-1}+1}}{t_{n_1+\ldots+n_{k-1}+1}} \cdots \frac{dt_{w-1}}{t_{w-1}} \frac{dt_w}{1 - t_w} \]

As a consequence, there is a second way to express the product of two MZVs as a linear combination of MZVs: the shuffle relations.

Example:

\[\zeta(2) \zeta(2) = \int \frac{dt_1}{t_1} \frac{dt_2}{1 - t_2} \frac{dt_3}{t_3} \frac{dt_4}{1 - t_4} \]

\[= 4 \zeta(3, 1) + 2 \zeta(2, 2). \]
Regularization relations

A third group of relations can be deduced from a natural extension of the preceding ones: the regularization relations. The simplest one is:

$$\zeta(2, 1) = \zeta(3),$$

obtained as follows:

$$\zeta(1)\zeta(2) = \zeta(1, 2) + \zeta(2, 1) + \zeta(3)$$
$$= \zeta(1, 2) + 2\zeta(2, 1).$$
Regularization relations

A third group of relations can be deduced from a natural extension of the preceding ones: the regularization relations. The simplest one is:

$$\zeta(2, 1) = \zeta(3),$$

obtained as follows:

$$\zeta(1)\zeta(2) = \zeta(1, 2) + \zeta(2, 1) + \zeta(3) = \zeta(1, 2) + 2\zeta(2, 1).$$
Regularization relations

A third group of relations can be deduced from a natural extension of the preceding ones: the regularization relations. The simplest one is:

\[\zeta(2, 1) = \zeta(3), \]

obtained as follows:

\[
\zeta(1)\zeta(2) = \frac{\zeta(1, 2)}{2} + \zeta(2, 1) + \zeta(3) \\
= \frac{\zeta(1, 2)}{2} + \mathcal{Q}\zeta(2, 1).
\]
These three groups of relations constitute the so-called **double shuffle relations**.

It is conjectured that no other relations occur among multiple zeta values. For example the **duality relations**, coming from \(t_j \mapsto 1 - t_j \) in the integral representation, should be deducible from DS relations.
These three groups of relations constitute the so-called **double shuffle relations**.

It is conjectured that no other relations occur among multiple zeta values. For example the **duality relations**, coming from $t_j \mapsto 1 - t_j$ in the integral representation, should be deducible from DS relations.

\[
\zeta(2, 1) = \zeta(3), \quad \zeta(2, 1, 1) = \zeta(4), \ldots, \quad \zeta(2, 1^{n-2}) = \zeta(n) \ldots
\]
Multiple polylogarithms (in one variable)

For any \(t \in [0, 1] \),

\[
\text{Li}_{n_1, \ldots, n_k}(t) := \int_{0 \leq t_w \leq \cdots \leq t_1 \leq t} \frac{dt_1}{t_1} \cdots \frac{dt_{n_1-1}}{t_{n_1-1}} \frac{dt_{n_1}}{1 - t_{n_1}} \cdots \frac{dt_{n_1+\cdots+n_{k-1}+1}}{t_{n_1+\cdots+n_{k-1}+1}} \cdots \frac{dt_{w-1}}{t_{w-1}} \frac{dt_w}{1 - t_w}
\]

\[
= \sum_{m_1 > \cdots > m_k > 0} \frac{t^{m_1}}{m_1^{n_1} \cdots m_k^{n_k}}.
\]
\[x(t) := \frac{1}{t}, \quad y(t) := \frac{1}{1-t}. \]

Three operators on the space of continuous maps \(f : [0, 1] \to \mathbb{R} \):

\[
X[f](t) := x(t)f(t), \\
Y[f](t) := y(t)f(t), \\
R[f](t) := \int_0^t f(u) \, du.
\]

⇒ Concise expression of the multiple polylogarithm:

\[
\operatorname{Li}_{n_1, \ldots, n_k} = (R \circ X)^{n_1-1} \circ (R \circ Y) \circ \cdots \circ (R \circ X)^{n_k-1} \circ (R \circ Y)[1].
\]
R is a **weight zero Rota-Baxter operator**:

\[R[f]R[g] = R[R[f]g + fR[g]]. \]

We have of course for any positive integers n_1, \ldots, n_k with $n_1 \geq 2$:

\[\text{Li}_{n_1,\ldots,n_k}(1) = \zeta(n_1,\ldots,n_k). \]
Word description of the quasi-shuffle relations

- Introduce the infinite alphabet $Y := \{y_1, y_2, y_3, \ldots\}$.
- Y^* is the set of words with letters in Y.
- $\mathbb{Q}\langle Y \rangle$ is the linear span of Y^* on \mathbb{Q}.
- **Quasi-shuffle product** on $\mathbb{Q}\langle Y \rangle$:

$$u_1 \cdots u_p \mathcal{U} u_{p+1} \cdots u_{p+q} := \sum_{r \geq 0} \sum_{\sigma \in qsh(p,q;r)} u_1^\sigma \cdots u_{p+q-r}^\sigma,$$

where u_j^σ is the **internal product** of the u_r’s with $\sigma(r) = j$. The internal product is given by $y_i \diamond y_j = y_{i+j}$. For later use, the **shuffle product** is defined by:

$$u_1 \cdots u_p \mathcal{U} u_{p+1} \cdots u_{p+q} := \sum_{\sigma \in qsh(p,q;0)} u_1^\sigma \cdots u_{p+q}^\sigma.$$
Example

\[y_2 \uplus y_3 y_1 = y_2 y_3 y_1 + y_3 y_2 y_1 + y_3 y_1 y_2 + y_5 y_1 + y_3 y_3, \]
\[y_2 \sqcup y_3 y_1 = y_2 y_3 y_1 + y_3 y_2 y_1 + y_3 y_1 y_2. \]
Notation: $Y_{\text{conv}}^* := Y^* \setminus y_1 Y^*$.

For any word $y_{n_1} \cdots y_{n_k}$ in Y_{conv}^* we set:

$$\zeta_{\uplus} (y_{n_1} \cdots y_{n_k}) := \zeta(n_1, \ldots, n_k).$$

Extend ζ_{\uplus} linearly.
Notation: \(Y_{\text{conv}}^* := Y^* \setminus y_1 Y^*. \)

For any word \(y_{n_1} \cdots y_{n_k} \) in \(Y_{\text{conv}}^* \) we set:

\[
\zeta_{\sqcup\sqcup} (y_{n_1} \cdots y_{n_k}) := \zeta(n_1, \ldots, n_k).
\]

Extend \(\zeta_{\sqcup\sqcup} \) linearly.

The quasi-shuffle relations are rewritten as follows: for any \(u, v \in Y_{\text{conv}}^* \),

\[
\zeta_{\sqcup\sqcup} (u) \zeta_{\sqcup\sqcup} (v) = \zeta_{\sqcup\sqcup} (u_{\sqcup\sqcup} v). \quad (5)
\]
Notation: \(Y_{\text{conv}}^* := Y^* \setminus y_1 Y^* \).

For any word \(y_{n_1} \cdots y_{n_k} \) in \(Y_{\text{conv}}^* \) we set:

\[
\zeta_{\sqcup\sqcup} (y_{n_1} \cdots y_{n_k}) := \zeta(n_1, \ldots, n_k).
\]

Extend \(\zeta_{\sqcup\sqcup} \) linearly.

The quasi-shuffle relations are rewritten as follows: for any \(u, v \in Y_{\text{conv}}^* \),

\[
\zeta_{\sqcup\sqcup} (u) \zeta_{\sqcup\sqcup} (v) = \zeta_{\sqcup\sqcup} (u \sqcup\sqcup v). \tag{5}
\]

example:

\[
\zeta_{\sqcup\sqcup} (y_2) \zeta_{\sqcup\sqcup} (y_3 y_1) = \zeta_{\sqcup\sqcup} (y_2 \sqcup\sqcup y_3 y_1) \\
= \zeta_{\sqcup\sqcup} (y_2 y_3 y_1 + y_3 y_2 y_1 + y_3 y_1 y_2 + y_5 y_1 + y_3 y_3),
\]

hence:

\[
\zeta(2) \zeta(3, 1) = \zeta(2, 3, 1) + \zeta(3, 2, 1) + \zeta(3, 1, 2) + \zeta(5, 1) + \zeta(3, 3).
\]
The quasi-shuffle product obviously extends to $\mathbb{Q}\langle Z \rangle$, where Z is the infinite alphabet $\{y_j, j \in \mathbb{Z}\}$.

Theorem (S. Paycha-DM, 2010)

There exists a character

$$\varphi : (\mathbb{Q}\langle Z \rangle, \sqcup\sqcup) \longrightarrow \mathbb{C}$$

such that

- $\varphi(v) = \zeta_{\sqcup\sqcup}(v)$ for any $v \in Y_{\text{conv}}^*$.
- For any $v = y_{n_1} \cdots y_{n_k} \in Z^*$ such that $\zeta(n_1, \ldots n_k)$ can be defined by analytic continuation, then $\varphi(v) = \zeta(n_1, \ldots n_k)$. In particular,
 - $\varphi(-n) = \zeta(-n) = -\frac{B_{n+1}}{n+1}$ for any $n \in \mathbb{Z}_+$.
 - $\varphi(-n, -n') = \zeta(-n, -n') = \frac{1}{2}(1 + \delta_0') \frac{B_{n+n'+1}}{n+n'+1}$ for any $n, n' \in \mathbb{Z}_+$ with $n + n'$ odd.
<table>
<thead>
<tr>
<th>$\zeta(-a,-b)$</th>
<th>$a = 0$</th>
<th>$a = 1$</th>
<th>$a = 2$</th>
<th>$a = 3$</th>
<th>$a = 4$</th>
<th>$a = 5$</th>
<th>$a = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b = 0$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{1}{12}$</td>
<td>$\frac{7}{720}$</td>
<td>$-\frac{1}{120}$</td>
<td>$-\frac{11}{2520}$</td>
<td>$\frac{1}{252}$</td>
<td>$\frac{1}{224}$</td>
</tr>
<tr>
<td>$b = 1$</td>
<td>$\frac{1}{24}$</td>
<td>$\frac{1}{288}$</td>
<td>$-\frac{1}{240}$</td>
<td>$-\frac{19}{10080}$</td>
<td>$\frac{1}{504}$</td>
<td>$\frac{41}{20160}$</td>
<td>$-\frac{1}{480}$</td>
</tr>
<tr>
<td>$b = 2$</td>
<td>$-\frac{7}{720}$</td>
<td>$-\frac{1}{240}$</td>
<td>0</td>
<td>$\frac{1}{504}$</td>
<td>$\frac{113}{151200}$</td>
<td>$-\frac{1}{480}$</td>
<td>$-\frac{307}{166320}$</td>
</tr>
<tr>
<td>$b = 3$</td>
<td>$-\frac{1}{240}$</td>
<td>$\frac{1}{840}$</td>
<td>$\frac{1}{504}$</td>
<td>$\frac{1}{28800}$</td>
<td>$-\frac{1}{480}$</td>
<td>$-\frac{281}{332640}$</td>
<td>$\frac{1}{264}$</td>
</tr>
<tr>
<td>$b = 4$</td>
<td>$\frac{11}{2520}$</td>
<td>$\frac{1}{504}$</td>
<td>$-\frac{113}{151200}$</td>
<td>$-\frac{1}{480}$</td>
<td>0</td>
<td>$\frac{1}{264}$</td>
<td>$\frac{117977}{75675600}$</td>
</tr>
<tr>
<td>$b = 5$</td>
<td>$\frac{1}{504}$</td>
<td>$-\frac{103}{60480}$</td>
<td>$-\frac{1}{480}$</td>
<td>$\frac{1}{1232}$</td>
<td>$\frac{1}{264}$</td>
<td>$\frac{1}{127008}$</td>
<td>$-\frac{691}{65520}$</td>
</tr>
<tr>
<td>$b = 6$</td>
<td>$-\frac{1}{224}$</td>
<td>$-\frac{1}{480}$</td>
<td>$\frac{307}{166320}$</td>
<td>$\frac{1}{264}$</td>
<td>$-\frac{117977}{75675600}$</td>
<td>$-\frac{691}{65520}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Sketch of proof: through regularisation and renormalisation.

- $\mathcal{H} := (\mathbb{Q}\langle Z \rangle, \shuffle, \Delta)$ is a connected filtered Hopf algebra, where Δ stands for deconcatenation:

$$\Delta(y_{n_1} \cdots y_{n_k}) = \sum_{j=0}^{k} y_{n_1} \cdots y_{n_j} \otimes y_{n_{j+1}} \cdots y_{n_k}.$$

- $\overline{\mathcal{H}} := (\mathbb{Q}\langle C \rangle, \shuffle, \Delta)$ where:

$$C := \{ y_t, t \in \mathbb{C} \}.$$

- $\overline{\mathcal{H}}_{\shuffle} := (\mathbb{Q}\langle C \rangle, \shuffle, \Delta), \quad \mathcal{H}_{\shuffle} := (\mathbb{Q}\langle Z \rangle, \shuffle, \Delta).$
Sketch of proof: through regularisation and renormalisation.

- $\mathcal{H} := (\mathbb{Q} \langle Z \rangle, \oplus, \Delta)$ is a connected filtered Hopf algebra, where Δ stands for deconcatenation:

$$\Delta(y_{n_1} \cdots y_{n_k}) = \sum_{j=0}^{k} y_{n_1} \cdots y_{n_j} \otimes y_{n_{j+1}} \cdots y_{n_k}.$$

- $\overline{\mathcal{H}} := (\mathbb{Q} \langle C \rangle, \underline{+}, \Delta)$ where:

$$C := \{ y_t, \ t \in \mathbb{C} \}.$$

- $\overline{\mathcal{H}}_{\underline{+}} := (\mathbb{Q} \langle C \rangle, \underline{+}, \Delta), \quad \mathcal{H}_{\underline{+}} := (\mathbb{Q} \langle Z \rangle, \underline{+}, \Delta)$.
- $\mathcal{R} : \overline{\mathcal{H}}_{\underline{+}} \to \text{Maps}(\mathbb{C}, \overline{\mathcal{H}}_{\underline{+}})$ defined below respects $\underline{+}$.

$$\mathcal{R}(y_{t_1} \cdots y_{t_k}) := y_{t_1-z} \cdots y_{t_k-z}.$$
• \(H \xrightarrow{\sim} \overline{H} \) is a Hopf algebra isomorphism.
\[\mathcal{H}_\sqcup \xrightarrow{\sim} \mathcal{H} \] is a Hopf algebra isomorphism.

\[\widetilde{\mathcal{R}} : \mathcal{H} \rightarrow \text{Maps}(\mathbb{C}, \mathcal{H}) \] defined by:

\[\widetilde{\mathcal{R}}(y_{t_1} \cdots y_{t_1}) := \exp_H \circ \mathcal{R} \circ \log_H \]

respects \(\sqcup \). The character

\[\Phi : (\mathbb{Q}\langle \mathbb{Z} \rangle, \sqcup) \]
\[\bar{\mathcal{H}} \xrightarrow{\sim} \mathcal{H} \]

is a Hopf algebra isomorphism.

\[\tilde{\mathcal{R}} : \bar{\mathcal{H}} \to \text{Maps}(\mathbb{C}, \mathcal{H}) \]

defined by:

\[\tilde{\mathcal{R}}(y_{t_1} \cdots y_{t_1}) := \exp_H \circ \mathcal{R} \circ \log_H \]

respects \(\sqcup \sqcap \). The character

\[\Phi : (\mathbb{Q}\langle \mathbb{Z} \rangle, \sqcup \sqcap) \longrightarrow \text{Mero}(\mathbb{C}) \quad (7) \]
\(\overline{\mathcal{H}} \xrightarrow{\sim} \overline{\mathcal{H}} \) is a Hopf algebra isomorphism.

\(\widetilde{\mathcal{R}} : \overline{\mathcal{H}} \to \text{Maps}(\mathbb{C}, \overline{\mathcal{H}}) \) defined by:

\[
\widetilde{\mathcal{R}}(y_{t_1} \cdots y_{t_1}) := \exp_H \circ \mathcal{R} \circ \log_H
\]

respects \(\boxplus \). The character

\[
\Phi : (\mathbb{Q}\langle \mathbb{Z} \rangle, \boxplus) \longrightarrow \text{Mero}(\mathbb{C})
\] \hspace{1cm} (7)

is defined by \(\Phi = \zeta_{\boxplus} \circ \widetilde{\mathcal{R}} \big|_{\mathcal{H}} \).
Then use **Birkhoff-Connes-Kreimer decomposition**:

$$\Phi = \Phi^{-1}_- \ast \Phi_+,$$

where \ast is the convolution product: $\alpha \ast \beta = m \circ (\alpha \otimes \beta) \circ \Delta$.
\(\Phi^+ \) and \(\Phi^- \) are still characters of \((\mathbb{Q}(Z), +) \),

\(\Phi^- (v) \in z^{-1} \mathbb{C}[z^{-1}] \) for any nonempty word \(v \).

\(\Phi^+ (v) \) is holomorphic at \(z = 0 \) for any word \(v \).

\(\Phi_{-1}^* = \Phi_- \circ S \), i.e. the inverse is given by composition on the right with the antipode.
\(\Phi_-(v) \) and \(\Phi_+(v) \) are given by explicit recursive formulas wrt the length of the word \(v \) (BPHZ algorithm): the commutative algebra \(\text{Mero}(\mathbb{C}) \) splits into two subalgebras:

\[
\text{Mero}(\mathbb{C}) = \mathcal{A}_- \oplus \mathcal{A}_+,
\]

where \(\mathcal{A}_- = z^{-1} \mathbb{C}[z^{-1}] \) and \(\mathcal{A}_+ \) is the subalgebra of meromorphic functions which do not have a pole at \(z = 0 \) (minimal subtraction scheme). Let \(\pi \) be the extraction of the pole part, i.e. the projection onto \(\mathcal{A}_- \) parallel to \(\mathcal{A}_+ \). Then:

\[
\begin{align*}
\Phi_-(w) &= -\pi \left(\Phi(w) + \sum_{(w')} \Phi_-(w') \Phi(w'') \right), \\
\Phi_+(w) &= (I - \pi) \left(\Phi(w) + \sum_{(w')} \Phi_-(w') \Phi(w'') \right).
\end{align*}
\]
Definition:

\[\varphi(\nu) := \Phi_+(\nu)(z) \bigg|_{z=0}. \]
Now we want to describe all solutions to the problem, i.e. describe the set of all characters of \((\mathbb{Q}\langle Z \rangle, \sqcup \sqcap)\) which extend multiple zeta functions in the sense described above.
The renormalisation group

Let \mathcal{H} be any commutative connected filtered Hopf algebra, over some base field k. Let \mathcal{A} be any commutative unital k-algebra, and let $G_{\mathcal{A}}$ be the group of characters of \mathcal{H} with values in \mathcal{A}. The product in $G_{\mathcal{A}}$ is given by convolution. The coproduct is conilpotent, i.e.

$$\Delta(x) = 1 \otimes x + x \otimes 1 + \tilde{\Delta}(x),$$

where $\tilde{\Delta}(x) = \sum_{(x)} x' \otimes x''$ is the reduced coproduct, and $\tilde{\Delta}^{(k)}(x) = 0$ for $k \geq |x|$.

Proposition

Let N be a right coideal with respect to the reduced coproduct, i.e. $\tilde{\Delta}(N) \subset N \otimes \mathcal{H}$ and $\varepsilon(N) = \{0\}$. The set

$$T_{\mathcal{A}} := \{ \alpha \in G_{\mathcal{A}}, \alpha|_N = 0 \}$$

is a subgroup of $G_{\mathcal{A}}$.
Proof.

The unit $e = u_{\mathcal{A}} \circ \varepsilon$ clearly belongs to $T_{\mathcal{A}}$. Now for any $\alpha, \beta \in T_{\mathcal{A}}$ and for any $w \in N$ we compute:

$$\alpha \ast \beta^{*-1}(w) = \alpha \ast (\beta \circ S)(w)$$

$$= \alpha(w) + \beta(S(w)) + \sum_{(w)} \alpha(w')(\beta \circ S)(w'')$$

$$= \alpha(w) + \beta \left(-w - \sum_{(w)} w'S(w'') \right) + \sum_{(w)} \alpha(w')(\beta \circ S)(w'')$$

$$= \alpha(w) - \beta(w) + \sum_{(w)} (\alpha - \beta)(w')(\beta \circ S)(w'')$$

$$= 0.$$
Definition

\mathcal{T}_A is the **renormalisation group** associated to the coideal N.

Now let

\[\zeta : N \to A \]

be a partially defined character, i.e. a linear map such that $\zeta(1) = 1_A$ and such that $\zeta(v) \cdot \zeta(w) = \zeta(v \cdot w)$ as long as v, w and $v \cdot w$ belong to N. Now let:

\[X_{\zeta, A} := \{ \phi \in GA | N = \zeta \} . \]
Definition

$T_{\mathcal{A}}$ is the **renormalisation group** associated to the coideal N.

Now let $\zeta : N \rightarrow \mathcal{A}$ be a **partially defined character**, i.e. a linear map such that $\zeta(1) = 1_{\mathcal{A}}$ and such that $\zeta(v)\zeta(w) = \zeta(v.w)$ as long as v, w and $v.w$ belong to N. Now let:

$$X_{\zeta, \mathcal{A}} := \{ \varphi \in G_{\mathcal{A}}, \varphi|_{N} = \zeta \}.$$
Definition

$T_{\mathcal{A}}$ is the \textbf{renormalisation group} associated to the coideal N.

Now let $\zeta : N \rightarrow \mathcal{A}$ be a \textbf{partially defined character}, i.e. a linear map such that $\zeta(1) = 1_{\mathcal{A}}$ and such that $\zeta(v)\zeta(w) = \zeta(v.w)$ as long as v, w and $v.w$ belong to N. Now let:

$$X_{\zeta, \mathcal{A}} := \{ \varphi \in G_{\mathcal{A}}, \varphi|_{N} = \zeta \}.$$

Theorem (K. Ebrahimi-Fard, DM, J. Singer, J. Zhao)

$X_{\zeta, \mathcal{A}}$ is a $T_{\mathcal{A}}$-principal homogeneous space. More precisely, the left action:

$$T_{\mathcal{A}} \times X_{\zeta, \mathcal{A}} \rightarrow X_{\zeta, \mathcal{A}}$$

$$(\alpha, \varphi) \mapsto \alpha \ast \varphi$$

is free and transitive.
Proof.

For any $\alpha \in T_\mathcal{A}$, $\varphi \in X_{\zeta,\mathcal{A}}$ and $w \in N$ we have:

$$\alpha \ast \varphi(w) = \alpha(w) + \varphi(w) + \sum_{(w)} \alpha(w') \varphi(w'')$$

$$= \zeta(w),$$

hence $\alpha \ast \varphi \in X_{\zeta,\mathcal{A}}$. Freeness is obvious. For transitivity, pick two elements φ, ψ in $X_{\zeta,\mathcal{A}}$ and proceed as in the previous proof.
We apply this general framework to $k = \mathbb{Q}$, $\mathcal{H} = (\mathbb{Q}\langle \mathbb{Z}^* \rangle, \{\pm\}, \Delta)$ and $\mathcal{A} = \mathbb{C}$. The right coideal N is the linear span of non-singular words, i.e. $w = y_{n_1} \cdots y_{n_k} \in \mathbb{Z}^* \cap N$ if and only if

1. $n_1 \neq 1$,
2. $n_1 + n_2 \notin \{2, 1, 0, -2, -4, \ldots\}$,
3. $n_1 + \cdots + n_j \notin \mathbb{Z}_{\leq j}$ for any $j \in \{3, \ldots, k\}$.

N is obviously a right coideal for deconcatenation.
We apply this general framework to $k = \mathbb{Q}$, $\mathcal{H} = (\mathbb{Q}[Z^*], \uplus, \Delta)$ and $\mathcal{A} = \mathbb{C}$. The right coideal N is the linear span of non-singular words, i.e. $w = y_{n_1} \cdots y_{n_k} \in Z^* \cap N$ if and only if

1. $n_1 \neq 1$,
2. $n_1 + n_2 \notin \{2, 1, 0, -2, -4, \ldots\}$,
3. $n_1 + \cdots + n_j \notin \mathbb{Z}_{\leq j}$ for any $j \in \{3, \ldots, k\}$.

N is obviously a right coideal for deconcatenation. Moreover it is stable by contractions, like:

$$y_{n_1} y_{n_2} y_{n_3} y_{n_4} y_{n_5} y_{n_6} y_{n_7} \mapsto y_{n_1} y_{n_2 + n_3 + n_4} y_{n_5} y_{n_6 + n_7}.$$
We apply this general framework to $k = \mathbb{Q}$, $\mathcal{H} = (\mathbb{Q}\langle Z^* \rangle, \uplus, \Delta)$ and $\mathcal{A} = \mathbb{C}$. The right coideal N is the linear span of non-singular words, i.e. $w = y_{n_1} \cdots y_{n_k} \in Z^* \cap N$ if and only if

1. $n_1 \neq 1$,
2. $n_1 + n_2 \notin \{2, 1, 0, -2, -4, \ldots\}$,
3. $n_1 + \cdots + n_j \notin \mathbb{Z}_{\leq j}$ for any $j \in \{3, \ldots, k\}$.

N is obviously a right coideal for deconcatenation. Moreover it is stable by contractions, like:

$$y_{n_1} y_{n_2} y_{n_3} y_{n_4} y_{n_5} y_{n_6} y_{n_7} \mapsto y_{n_1} y_{n_2 + n_3 + n_4} y_{n_5} y_{n_6 + n_7}.$$

We denote by $\Sigma = Z^* \setminus (Z^* \cap N)$ the set of singular words, and by Σ_k the set of singular words of length k. With the notations of the Introduction we have:

$$\Sigma_k = \{ y_{n_1} \cdots y_{n_k}, (n_1, \ldots, n_k) \in S_k \}.$$
The partially defined character ζ is given by

$$\zeta(y_{n_1} \cdots y_{n_k}) = \zeta(n_1, \ldots, n_k),$$

for any non-singular word $y_{n_1} \cdots y_{n_k}$, the RHS being the ordinary MZV or the value obtained by analytic continuation.
Thus, the set of all solutions to our initial problem is

\[X_{\xi,C} = T_C \cdot \varphi, \]

where \(\varphi \) is one particular solution (which is known to exist).
Thus, the set of all solutions to our initial problem is

$$X_{\zeta, C} = T_C \cdot \varphi,$$

where φ is one particular solution (which is known to exist).

The renormalisation group T_C **is big** (infinite-dimensional).
q-analogues of multiple zeta values
The Jackson integral is defined by:

\[J[f](t) = \int_0^t f(u) \, d_q u = \sum_{n \geq 0} (q^n t - q^{n+1} t) f(q^n t). \]
Outline
Multiple zeta values
Extension to arguments of any sign
The renormalisation group
q-multiple zeta values

The Jackson integral
Multiple q-polylogarithms
Ohno-Okuda-Zudilin q-MZVs
Double q-shuffle relations

Dominique Manchon LMBP, CNRS-Université Clermont-Auvergne

On Multiple zeta values and their q-analogues
Here q is a parameter in $]0, 1[$.

When $q \nearrow 1$ the Riemann sum above converges to the ordinary integral.

q can also be considered as an indeterminate: The Jackson integral operator J is then a $\mathbb{Q}[[q]]$-linear endomorphism of

$$\mathcal{A} := t\mathbb{Q}[[t, q]].$$
A weight -1 Rota-Baxter operator

The $\mathbb{Q}[[q]]$-linear operator $P_q : \mathcal{A} \longrightarrow \mathcal{A}$ defined by:

$$P_q[f](t) := \sum_{n \geq 0} f(q^n t) = f(t) + f(qt) + f(q^2 t) + f(q^3 t) + \cdots$$

satisfies the weight -1 Rota-Baxter identity:

$$P_q[f]P_q[g] = P_q[P_q[f]g + fP_q[g] - fg].$$

Operator P_q is invertible with inverse:

$$P_q^{-1}[f](t) = D_q[f](t) = f(t) - f(qt).$$
The \(q \)-difference operator \(D_q \) satisfies a modified Leibniz rule:

\[
D_q[fg] = D_q[f]g + fD_q[g] - D_q[f]D_q[g].
\]

We end up with three identities:

\[
\begin{align*}
P_q[f]P_q[g] &= P_q[P_q[f]g + fP_q[g] - fg], \quad (9) \\
D_q[f]D_q[g] &= D_q[f]g + fD_q[g] - D_q[fg], \quad (10) \\
D_q[f]P_q[g] &= D_q[fP_q[g]] + D_q[f]g - fg. \quad (11)
\end{align*}
\]

Note that (9), (10) and (11) are equivalent.
Multiple \(q \)-polylogarithms

- Introduce the functions:

\[
 x(t) := \frac{1}{t}, \quad y(t) := \frac{1}{1-t}, \quad \overline{y}(t) := \frac{t}{1-t}.
\]

Note that \(\overline{y} \) is an element of \(\mathcal{A} \).

- Introduce \(X, Y, \overline{Y} \), multiplication operators by \(x, y, \overline{y} \) resp.

- Recall:

\[
\text{Li}_{n_1, \ldots, n_k} = (R \circ X)^{n_1-1} \circ (R \circ Y) \circ \cdots \circ (R \circ X)^{n_k-1} \circ (R \circ Y)[1].
\]

- Analogously:

\[
\text{Li}_{n_1, \ldots, n_k}^q := (J \circ X)^{n_1-1} \circ (J \circ Y) \circ \cdots \circ (J \circ X)^{n_k-1} \circ (J \circ Y)[1].
\]
Ohno-Okuda-Zudilin \(q \)-multiple zeta values

(Yasuo Ohno, Jun-Ichi Okuda, Wadim Zudilin, 2012)

- Recall:
 \[
 \zeta(n_1, \ldots, n_k) = \text{Li}_{n_1, \ldots, n_k}(1).
 \]

- By analogy define:
 \[
 \zeta_q(n_1, \ldots, n_k) := \text{Li}^{q}_{n_1, \ldots, n_k}(q).
 \]

- Some straightforward computation shows:
 \[
 \zeta_q(n_1, \ldots, n_k) = \sum_{m_1 > \cdots > m_k} \frac{q^{m_1}}{[m_1]_q^{n_1} \cdots [m_k]_q^{n_k}},
 \]
 with usual \(q \)-numbers:
 \[
 [m]_q = \frac{1 - q^m}{1 - q} = 1 + q + \cdots + q^{m-1}.
 \]
For any positive integers $n_1, \ldots n_k$ with $n_1 \geq 2$, the q-MZV $\zeta_q(n_1, \ldots, n_k)$ makes sense for any complex q with $|q| \leq 1$, and we have:

$$\lim_{q \uparrow 1} \zeta_q(n_1, \ldots, n_k) = \zeta(n_1, \ldots, n_k).$$

Here, $q \uparrow 1$ means $q \to 1$ inside an angular sector:

$$\text{Arg}(q - 1) \in \left[\frac{\pi}{2} + \varepsilon, \frac{3\pi}{2} - \varepsilon\right].$$
An alternative description in terms of the operator P_q will be very convenient:

$$
\bar{3}_q(n_1, \ldots, n_k) := (1 - q)^{-w} \bar{3}_q(n_1, \ldots, n_k)
$$

$$
= \sum_{m_1 > \cdots > m_k > 0} q^{m_1} (1 - q^{m_1})^{n_1} \cdots (1 - q^{m_k})^{n_k}
$$

$$
= P_{q}^{n_1} \circ \bar{Y} \circ \cdots \circ P_{q}^{n_k} \circ \bar{Y}[1](t) \big|_{t=q}.
$$

where we recall that \bar{Y} is the operator of multiplication by

$$
\bar{y} : t \mapsto \frac{t}{1 - t}.
$$
Other models of \(q \)-MZVs

\[
\zeta_S(q)(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} [m_1]^{n_1} q \cdots [m_k]^{n_k} q = \text{Li}_{n_1, \ldots, n_k}(1).
\]

Zhao-Bradley model (2003) (\(k = 1 \): Kaneko, Kurokawa, and Wakayama).

\[
\zeta(q)(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} q^{m_1}(n_1 - 1) + \cdots + q^{m_k}(n_k - 1) [m_1]^{n_1} q \cdots [m_k]^{n_k} q.
\]

Multiple divisor functions (Bachmann-Kühn, 2013):

\[
[n_1, \ldots, n_k] = 1 \left(n_1 - 1 \right)! \cdots \left(n_k - 1 \right)! \sum_{j > 0} \left(\sum_{m_1 > \cdots > m_k \geq 1} m_1^{v_1} + \cdots + m_k^{v_k} = j \right) v_1^{n_1 - 1} \cdots v_k^{n_k - 1} q^j.
\]
Other models of qMZVs

- Schlesinger model (2001):

$$\zeta_S(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} \frac{1}{[m_1]_q^{n_1} \cdots [m_r]_q^{n_k}} = \operatorname{Li}_{n_1, \ldots, n_k}^q(1).$$
Other models of qMZVs

- Schlesinger model (2001):

$$
\zeta^S_q(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} \frac{1}{[m_1]_q^{n_1} \cdots [m_r]_q^{n_k}} = \text{Li}^q_{n_1, \ldots, n_k}(1).
$$

- Zhao-Bradley model (2003)

(k = 1: Kaneko, Kurokawa and Wakayama).

$$
\zeta_q(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} \frac{q^{m_1(n_1-1)+\cdots+m_k(n_k-1)}}{[m_1]_q^{n_1} \cdots [m_r]_q^{n_k}}.
$$
Other models of qMZVs

- Schlesinger model (2001):
 \[
 \zeta^S_q(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} \frac{1}{[m_1]_q^{n_1} \cdots [m_r]_q^{n_k}} = \text{Li}^q_{n_1, \ldots, n_k}(1).
 \]

- Zhao-Bradley model (2003)
 ($k = 1$: Kaneko, Kurokawa and Wakayama).
 \[
 \zeta_q(n_1, \ldots, n_k) := \sum_{m_1 > \cdots > m_k \geq 1} \frac{q^{m_1(n_1-1)+\cdots+m_k(n_k-1)}}{[m_1]_q^{n_1} \cdots [m_r]_q^{n_k}}.
 \]

- Multiple divisor functions (Bachmann-Kühn, 2013):
 \[
 [n_1, \ldots, n_k] = \frac{1}{(n_1-1)! \cdots (n_k-1)!} \sum_{j>0} \left(\sum_{m_1 > \cdots > m_k \geq 1} \frac{v_1^{n_1-1} \cdots v_k^{n_k-1}}{m_1 v_1 + \cdots + m_k v_k = j} \right) q^j.
 \]
Extension to arguments of any sign

The iterated sum defining $\bar{\zeta}_q(n_1, \ldots, n_k)$ makes perfect sense in $\mathbb{Q}[[q]]$ for any $n_1, \ldots, n_k \in \mathbb{Z}$.

Moreover it also makes sense when specializing q to a complex number of modulus < 1:

$$|\bar{\zeta}_q(n_1, \ldots, n_k)| \leq |q|^k (1 - |q|)^{-w' - k},$$

with $w' := \sum_{i=1}^k |n_i|$.

For any $n_1, \ldots, n_k \in \mathbb{Z}$ we still have (with $P_q^{-1} = D_q$):

$$\bar{\zeta}_q(n_1, \ldots, n_k) = P_q^{n_1} \circ \overline{Y} \circ \cdots \circ P_q^{n_1} \circ \overline{Y}[1](t)|_{t=q}.$$
Examples

\[\bar{\zeta}_q(0) = \sum_{q>0} q^m = \frac{q}{1 - q},\]

\[\bar{\zeta}_q(0, \ldots, 0)_k = \left(\frac{q}{1 - q} \right)^k,\]

\[\bar{\zeta}_q(-1) = \sum_{m>0} q^m (1 - q^m) = \frac{q}{1 - q} - \frac{q^2}{1 - q^2} .\]

\[\bar{\zeta}_q(1) = \sum_{m>0} \frac{q^m}{1 - q^m} \text{ (Lambert series)}\]
Double q-shuffle relations

- The q-MZVs described above admit both q-shuffle and q-quasi-shuffle relations.
- Double q-shuffle relations have been also settled recently (2013) by Yoshihiro Takeyama in the Bradley model.
\textit{q-shuffle relations}

- Let \tilde{X} be the alphabet $\{d, y, p\}$.
- Let \mathcal{W} be the set of words on the alphabet \tilde{X}, ending with y and subject to

 $$dp = pd = 1,$$

 where 1 is the empty word.
q-shuffle relations

- Let \tilde{X} be the alphabet $\{d, y, p\}$.
- Let W be the set of words on the alphabet \tilde{X}, ending with y and subject to

$$dp = pd = 1,$$

where 1 is the empty word.
- Any nonempty word in W writes uniquely $v = p^{n_1} y \cdots p^{n_k} y$, with $n_1, \ldots, n_k \in \mathbb{Z}$.

q-shuffle relations

- Let \tilde{X} be the alphabet $\{d, y, p\}$.
- Let W be the set of words on the alphabet \tilde{X}, ending with y and subject to

 \[dp = pd = 1, \]

 where 1 is the empty word.
- Any nonempty word in W writes uniquely $v = p^{n_1} y \cdots p^{n_k} y$, with $n_1, \ldots, n_k \in \mathbb{Z}$.
- Now define:

 \[\tilde{\delta}_q (p^{n_1} y \cdots p^{n_k} y) := \tilde{\delta}_q (n_1, \ldots, n_k) \]

 and extend linearly.
\textbullet\ \textit{q}-shuffle product recursively given (w.r.t. length of words) by $1\shuffle v = v\shuffle 1 = v$ and:

\begin{align*}
(yv)\shuffle u &= v\shuffle (yu) = y(v\shuffle u), \\
pv\shuffle pu &= p(v\shuffle pu) + p(pv\shuffle u) - p(v\shuffle u), \\
dv\shuffle du &= v\shuffle du + dv\shuffle u - d(v\shuffle u), \\
dv\shuffle pu &= pu\shuffle dv = d(v\shuffle pu) + dv\shuffle u - v\shuffle u.
\end{align*}

for any $u, v \in W$. \hspace{1cm} \textbullet\ Explanation

\textbullet\ The product \shuffle is \textbf{commutative} and \textbf{associative}.

\textbullet\ The \textit{q}-shuffle relations write:

$$\bar{\delta}_q(u)\bar{\delta}_q(v) = \bar{\delta}_q(u\shuffle v).$$

\hspace{1cm} \textbullet\ return to computation
\(q\)-quasi-shuffle relations

- \(\tilde{Y} = \) alphabet \(\{z_n, n \in \mathbb{Z}\}\), with internal product \(z_i \diamond z_j = z_{i+j}\).
- Let \(\tilde{Y}^*\) be set of words with letters in \(\tilde{Y}\).
- Let \(*\) be the ordinary quasi-shuffle product on \(\mathbb{Q}\langle \tilde{Y} \rangle\).
- Let \(T\) be the shift operator defined for any word \(u\) by:

\[
T(z_n u) := (z_n - z_{n-1}) u.
\]

- The \(q\)-quasi-shuffle product \(\uplus\uplus\) is (uniquely) defined by:

\[
T(u \uplus \uplus v) = Tu \ast Tv.
\]
Define \(\overline{\delta}_q \uplus (z_{n_1} \cdots z_{n_k}) := \overline{\delta}_q(n_1, \ldots, n_k) \) and extend linearly.

the \(q \)-quasi-shuffle relations write:

\[
\overline{\delta}_q \uplus (u) \overline{\delta}_q \uplus (v) = \overline{\delta}_q \uplus (u \uplus v)
\]

for any words \(u, v \in \tilde{Y}^* \).
Define $\bar{\bar{\zeta}}^{\uplus\uplus}_q(z_{n_1} \cdots z_{n_k}) := \bar{\bar{\zeta}}_q(n_1, \ldots, n_k)$ and extend linearly.

The q-quasi-shuffle relations write:

$$\bar{\bar{\zeta}}^{\uplus\uplus}_q(u) \bar{\bar{\zeta}}^{\uplus\uplus}_q(v) = \bar{\bar{\zeta}}^{\uplus\uplus}_q(u \uplus \downarrow v)$$

for any words $u, v \in \tilde{\tilde{Y}}^*$.

Example of q-quasi-shuffle relation: for any $a, b \in \mathbb{Z}$,

$$\bar{\bar{\zeta}}_q(a) \bar{\bar{\zeta}}_q(b) = \bar{\bar{\zeta}}_q(a, b) + \bar{\bar{\zeta}}_q(b, a) + \bar{\bar{\zeta}}_q(a + b) - \bar{\bar{\zeta}}_q(a, b - 1) - \bar{\bar{\zeta}}_q(b, a - 1) - \bar{\bar{\zeta}}_q(a + b - 1).$$

Note that the weight is not conserved, contrarily to the classical case.
In terms on "non-modified" q-MZVs, the previous example becomes:

$$\zeta_q(a)\zeta_q(b) = \zeta_q(a, b) + \zeta_q(b, a) + \zeta_q(a + b) - (1 - q)\left[\zeta_q(a, b - 1) + \zeta_q(b, a - 1) + \zeta_q(a + b - 1)\right].$$

In the limit $q \uparrow 1$, the "weight drop term" disappears, and we recover the classical quasi-shuffle relation.
Important remark

There are no regularization relations in this picture. The swap

$$\tau : \tilde{Y}^* \to \mathcal{W}$$

is defined by:

$$\tau(z_{n_1} \cdots z_{n_k}) := p^{n_1 - 1}y \cdots p^{n_k - 1}y,$$

and the change of coding writes itself:

$$\tilde{\mathfrak{d}}_q^{\uparrow \downarrow} = \tilde{\mathfrak{d}}_q^{\uparrow \downarrow} \circ \tau$$

in full generality.
Summing up, the double q-shuffle relations write themselves as follows:

for any $u, v \in \tilde{Y}^*$ and for any $u', v' \in W$,

\[
\begin{align*}
\tilde{3}_q^{\updownarrow \downarrow} (u)\tilde{3}_q^{\updownarrow \downarrow} (v) &= \tilde{3}_q^{\updownarrow \downarrow} (u \downarrow \downarrow v), \\
\tilde{3}_q^{\downarrow \downarrow} (u')\tilde{3}_q^{\downarrow \downarrow} (v') &= \tilde{3}_q^{\downarrow \downarrow} (u' \downarrow \downarrow v'),
\end{align*}
\]

and we also have:

\[
\tilde{3}_q^{\updownarrow \downarrow} = \tilde{3}_q^{\downarrow \downarrow} \circ r.
\]
An example of computation using double q-shuffle relations

Using q-quasi-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).$$
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).$$

- Using q-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q^{\shuffle}(py) \bar{\zeta}_q^{\shuffle}(ppy)$$
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:

$$
\bar{\vartheta}_q(1)\bar{\vartheta}_q(2) = \bar{\vartheta}_q(1, 2) + \bar{\vartheta}_q(2, 1) + \bar{\vartheta}_q(3) - \bar{\vartheta}_q(1, 1) - \bar{\vartheta}_q(2, 0) - \bar{\vartheta}_q(2).
$$

- Using q-shuffle:

$$
\bar{\vartheta}_q(1)\bar{\vartheta}_q(2) = \bar{\vartheta}_q(1)\downarrow\downarrow(py)\bar{\vartheta}_q(2)\downarrow\downarrow(ppy) = \bar{\vartheta}_q(1)\downarrow\downarrow(py\downarrow\downarrow ppy)
$$
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:

$$\bar{\mathfrak{z}}_q(1)\bar{\mathfrak{z}}_q(2) = \bar{\mathfrak{z}}_q(1,2) + \bar{\mathfrak{z}}_q(2,1) + \bar{\mathfrak{z}}_q(3) - \bar{\mathfrak{z}}_q(1,1) - \bar{\mathfrak{z}}_q(2,0) - \bar{\mathfrak{z}}_q(2).$$

- Using q-shuffle:

$$\bar{\mathfrak{z}}_q(1)\bar{\mathfrak{z}}_q(2) = \bar{\mathfrak{z}}_q (py) \bar{\mathfrak{z}}_q (ppy) = \bar{\mathfrak{z}}_q (py \shuffle ppy) = \bar{\mathfrak{z}}_q (p(y \shuffle ppy + py \shuffle py - y \shuffle py)).$$
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:
\[
\bar{\delta}_q(1)\bar{\delta}_q(2) = \bar{\delta}_q(1,2) + \bar{\delta}_q(2,1) + \bar{\delta}_q(3) - \bar{\delta}_q(1,1) - \bar{\delta}_q(2,0) - \bar{\delta}_q(2).
\]

- Using q-shuffle:
\[
\begin{align*}
\bar{\delta}_q(1)\bar{\delta}_q(2) &= \bar{\delta}_q(p y)\bar{\delta}_q(p p y) \\
&= \bar{\delta}_q(p ypp y) \\
&= \bar{\delta}_q(p (ypp y + p ypp y - ypp y)) \\
&= \bar{\delta}_q(p (ypp y + p(2ypp y - yy) - ypp y)).
\end{align*}
\]
An example of computation using double q-shuffle relations

- **Using q-quasi-shuffle:**

$$
\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).
$$

- **Using q-shuffle:**

\[
\begin{align*}
\bar{\zeta}_q(1)\bar{\zeta}_q(2) &= \bar{\zeta}_q(p y)\bar{\zeta}_q(p y) \\
&= \bar{\zeta}_q(p y p y) \\
&= \bar{\zeta}_q(p y y y + p y y + p y - y y) \\
&= \bar{\zeta}_q(p y y y + 2 p y y - p y y - p y y)
\end{align*}
\]
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).$$

- Using q-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).$$
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:

$$
\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).
$$

- Using q-shuffle:

$$
\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q pym + ppyy - yyy - ppy.
$$
An example of computation using double q-shuffle relations

- **Using q-quasi-shuffle:**

$$
\bar{\delta}_q(1) \bar{\delta}_q(2) = \bar{\delta}_q(1, 2) + \bar{\delta}_q(2, 1) + \bar{\delta}_q(3) - \bar{\delta}_q(1, 1) - \bar{\delta}_q(2, 0) - \bar{\delta}_q(2).
$$

- **Using q-shuffle:**

\[
\begin{align*}
\bar{\delta}_q(1) \bar{\delta}_q(2) &= \bar{\delta}_q(\text{py}) \bar{\delta}_q(\text{ppy}) \\
&= \bar{\delta}_q(\text{py} \text{ppy}) \\
&= \bar{\delta}_q\left(p(y \text{ppy} + py \text{py} - y \text{py})\right) \\
&= \bar{\delta}_q\left(p(yppy + p(2ypy - yy) - ypy)\right) \\
&= \bar{\delta}_q\left(pyppy + 2ppy - ppyy - pppy\right) \\
&= \bar{\delta}_q(1, 2) + 2 \bar{\delta}_q(2, 1) - \bar{\delta}_q(2, 0) - \bar{\delta}_q(1, 1).
\end{align*}
\]
An example of computation using double q-shuffle relations

- **Using** q-quasi-shuffle:

 \[\tilde{\zeta}_q(1)\tilde{\zeta}_q(2) = \tilde{\zeta}_q(1, 2) + \tilde{\zeta}_q(2, 1) + \tilde{\zeta}_q(3) - \tilde{\zeta}_q(1, 1) - \tilde{\zeta}_q(2, 0) - \tilde{\zeta}_q(2). \]

- **Using** q-shuffle:

 \[
 \tilde{\zeta}_q(1)\tilde{\zeta}_q(2) = \tilde{\zeta}_q\left(p y \tilde{\zeta}_q\left(pp y\right)\right) \\
 = \tilde{\zeta}_q\left(p y \tilde{\zeta}_q\left(pp y\right)\right) \\
 = \tilde{\zeta}_q\left(p(yp y + py \tilde{\zeta}_q\left(pp y\right) - y \tilde{\zeta}_q\left(pp y\right))\right) \\
 = \tilde{\zeta}_q\left(p(yp y + p(2y p y - y y) - y y)\right) \\
 = \tilde{\zeta}_q\left(p(yp y + 2pp y y - pp y - p y y)\right) \\
 = \tilde{\zeta}_q\left(1, 2\right) + 2 \tilde{\zeta}_q\left(2, 1\right) - \tilde{\zeta}_q\left(2, 0\right) - \tilde{\zeta}_q\left(1, 1\right). \]
An example of computation using double q-shuffle relations

- Using q-quasi-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(1,2) + \bar{\zeta}_q(2,1) + \bar{\zeta}_q(3) - \bar{\zeta}_q(1,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(2).$$

- Using q-shuffle:

$$\bar{\zeta}_q(1)\bar{\zeta}_q(2) = \bar{\zeta}_q(py)\bar{\zeta}_q(ppy)$$

$$= \bar{\zeta}_q(py\shuffle ppy)$$

$$= \bar{\zeta}_q(p(y\shuffle ppy + py\shuffle py - y\shuffle py))$$

$$= \bar{\zeta}_q(p(yppy + p(2ypy - yy) - ypy))$$

$$= \bar{\zeta}_q(pyyyyMMdd)$$

$$= \bar{\zeta}_q(1,2) + 2\bar{\zeta}_q(2,1) - \bar{\zeta}_q(2,0) - \bar{\zeta}_q(1,1).$$
Hence,

\[\bar{\zeta}_q(2,1) = \bar{\zeta}_q(3) - \bar{\zeta}_q(2), \]

thus recovering Euler's regularization relation \[\zeta(2,1) = \zeta(3) \] in the limit \(q \to 1 \).
Hence,

$$\bar{\zeta}_q(2,1) = \bar{\zeta}_q(3) - \bar{\zeta}_q(2),$$
or equivalently,

$$\zeta_q(2,1) = \zeta_q(3) - (1 - q)\zeta_q(2).$$
Hence,
\[\bar{\zeta}_q(2, 1) = \bar{\zeta}_q(3) - \bar{\zeta}_q(2), \]
or equivalently,
\[\zeta_q(2, 1) = \zeta_q(3) - (1 - q)\zeta_q(2). \]
thus recovering Euler’s regularization relation
\[\zeta(2, 1) = \zeta(3) \]
in the limit \(q \to 1 \).
Hence,
\[\bar{\zeta}_q(2,1) = \bar{\zeta}_q(3) - \bar{\zeta}_q(2), \]
or equivalently,
\[\zeta_q(2,1) = \zeta_q(3) - (1 - q)\zeta_q(2). \]
thus recovering Euler's regularization relation
\[\zeta(2,1) = \zeta(3) \]
in the limit \(q \nearrow 1. \)

Perspectives and open problems

- Are the double shuffle relations the only ones among our qMZVs?
- Combinatorial description of the q-shuffle product \shuffle. Find a compatible coproduct.
- Parameter q yields a regularisation of MZVs. What about renormalization for $q \to 1$?
Perspectives and open problems

- Are the double shuffle relations the only ones among our qMZVs?
- Combinatorial description of the q-shuffle product $⊔⊔$. Find a compatible coproduct.
- Parameter q yields a regularisation of MZVs. What about renormalization for $q \to 1$?

Behaviour of Lambert series for $q \to 1$ or $q \to e^{2i\pi/n}$: cf. Dorigoni-Kleinschmidt (2020).
Outline

Multiple zeta values
Extension to arguments of any sign
The renormalisation group
q-multiple zeta values

References

O. Bouillot,
Multiple Bernoulli polynomials and numbers, preprint

L. Guo, B. Zhang,
Renormalization of multiple zeta values,
J. Algebra **319** No. 9, 3770-3809 (2008).

D. Manchon, S. Paycha,
Nested sums of symbols and renormalized multiple zeta values,

K. Ebrahimi-Fard, D. Manchon, J. Singer,
Renormalisation of q-regularized multiple zeta values,

K. Ebrahimi-Fard, D. Manchon, J. Singer, J. Zhao,
Renormalisation group for multiple zeta values,

Y. Ohno, J.-I. Okuda, W. Zudilin,
Cyclic q-MZV sum,

Y. Takeyama,
The algebra of a q-analogues of multiple harmonic series,

J. Castillo-Medina, K. Ebrahimi-Fard, D. Manchon,
Unfolding the double shuffle structure of q-MZVs,
Thank you for your attention!