3–4 déc. 2020
Virtuel
Fuseau horaire Europe/Paris

Un problème d'homogénéisation périodique avec défauts rares à l'infini

3 déc. 2020, 14:30
30m
Zoom (Virtuel)

Zoom

Virtuel

Orateur

M. Rémi Goudey (Ecole des ponts et INRIA )

Description

Dans cette communication, je considérerai un problème d'homogénéisation pour l'équation de diffusion $-div\left(a(./\varepsilon) \nabla u_{\varepsilon} \right) = f$ où le coefficient $a$ décrit une géométrie périodique perturbée par un défaut non localisé mais devenant rare à l'infini. Plus précisément, l'ensemble des coefficients étudiés s'écriront comme la somme d'un coefficient périodique $a_{per}$ et d'une perturbation $\tilde{a}$ se comportant comme des fonctions de $L^2(\mathbb{R}^d)$ au voisinage de points séparés d'une distance exponentiellement croissante lorsqu'on s'éloigne de l'origine.

Dans un cadre fonctionnel adapté au problème, on peut montrer l'existence d'une solution $w$ de l'équation du correcteur $-div(a(\nabla w +p)) = 0$ posée sur tout l'espace $\mathbb{R}^d$, dont le gradient partage la même structure "périodique + perturbation rare à l'infini" que le coefficient $a$. Ce correcteur permet alors d'identifier la limite homogénéisée de la suite $u^{\varepsilon}$ et d'établir des taux de convergence vers cette limite.

Ce travail s'inscrit directement dans la continuité de plusieurs travaux [1,2,3] dans lesquels les auteurs ont développé une théorie de l'homogénéisation similaire dans un cadre où le défaut $\tilde{a}$ décrit une perturbation localisée de la géométrie périodique et appartient à un espace $L^r(\mathbb{R}^d)$ pour $r\in ]1, + \infty[$.

Références

[1]. X. Blanc, M. Josien, C. Le Bris, Precised approximations in elliptic homogenization beyond the periodic setting, Asymptotic Analysis, 116(2), 93–137, 2020.

[2]. X. Blanc, C. Le Bris, P-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects, Communications in Partial Differential Equations 43, no.6, pp 965-997, 2018.

[3]. X. Blanc, C. Le Bris, P-L. Lions, A possible homogenization approach for the numerical simulation of periodic microstructures with defects, Milan Journal of Mathematics 80, no.2, pp 351-367, 2012.

[4]. R. Goudey, thèse en prépration. A periodic homogenization problem with defects rare at infinity, Preprint.

Auteur principal

M. Rémi Goudey (Ecole des ponts et INRIA )

Documents de présentation