Séminaires sur les aspects théoriques et expérimentaux de la gravitation

Massive neutrinos in the non-linear regime of cosmological structure formation

by Prof. Yacine ALI-HAÏMOUD (IAS, Princeton)

Amphithéâtre Léon Motchane (Institut des Hautes Etudes Scientifiques)

Amphithéâtre Léon Motchane

Institut des Hautes Etudes Scientifiques

Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette
Massive neutrinos make up a fraction of the dark matter, but due to their large thermal velocities, cluster significantly less than cold dark matter (CDM) on small scales. An accurate theoretical modelling of their effect during the non-linear regime of structure formation is required in order to properly analyse current and upcoming high-precision large-scale structure data, and constrain the neutrino mass. Taking advantage of the fact that massive neutrinos remain linearly clustered up to late times, we treat the linear growth of neutrino overdensities in a non-linear CDM background. The evolution of the CDM component is obtained via N-body computations. The smooth neutrino component is evaluated from that background by solving the Boltzmann equation linearised with respect to the neutrino overdensity. CDM and neutrinos are simultaneously evolved in time, consistently accounting for their mutual gravitational influence. This method avoids the issue of shot-noise inherent to particle-based neutrino simulations, and, in contrast with standard Fourier-space methods, properly accounts for the non-linear potential wells in which the neutrinos evolve. Inside the most massive late-time clusters, where the escape velocity is larger than the neutrino thermal velocity, neutrinos can clump non-linearly, causing the method to formally break down. It is shown that this does not affect the total matter power spectrum, which can be very accurately computed on all relevant scales up to the present time.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now