Speaker
Description
La percolation bootstrap et les modèles avec contraintes cinétiques sont deux classes de modèles de mécanique statistique ayant des caractéristiques communes : dans ces modèles, chaque site d’un graphe peut être sain ou infecté, et ne peut changer d’état que si une contrainte est satisfaite. Cependant, ces modèles présentent aussi des différences : la percolation bootstrap est déterministe et monotone, tandis que les modèles avec contraintes cinétiques sont stochastiques et non monotones. D’importantes avancées ont été réalisées récemment dans l’étude de ces modèles, avec la découverte de résultats d’universalité : dans Z², l’ensemble des contraintes possibles se répartit en un nombre fini de classes aux comportements différents. Dans cet exposé, on présentera ces résultats d’universalité et on étudiera les différences entre la percolation bootstrap et les modèles avec contraintes cinétiques.