21–23 mai 2018
Faculté de Mathématique et Informatique de l'Université Bucarest
Fuseau horaire Europe/Bucharest

Comportement asymptotique des équations de convection-diffusion fractionnaires / Asymptotic behaviour for fractional diffusion-convection equations

21 mai 2018, 10:00
1h

Orateur

Liviu Ignat (IMAR, Bucarest, Roumanie)

Description

In this talk, we analyze the long time behaviour of the solutions of the equation ut(t,x)+(Δ)α/2u(t,x)+(f(u))x=0, t(0,), xR, where α(0,2) and f(s)=|s|q1s/q with q(1,). We present some prvious results on the asymptotic expansion of the solutions when the time goes to infinity. We prove that in the one-dimensional case, for q(1,α) the asymptotic behaviour is given by the entropy solution of the conservation law ut(t,x)+(f(u))x=0, u(0)=Mδ0 where M is the mass of the initial data. The proof relies on tricky inequalities to guarantee an Oleinik type inequality (uq1)x1/t. This is a joint work with Diana Stan. This presentation is partially supported by CNCS-UEFISCDI No. PN-III-P4- ID-PCE-2016-0035.

Auteur principal

Liviu Ignat (IMAR, Bucarest, Roumanie)

Co-auteur

Diana Stan (Basque Center for Applied Mathematics, Bilabao, Espagne)

Documents de présentation