Asymptotic behaviour for fractional diffusionconvection equations

Liviu Ignat

Institute of Mathematics of the Romanian Academy

May 21, 2018, Bucharest Joint work with Diana Stan (BCAM-Spain)

Fractional Diffusion Convection

We study the following nonlocal model:

$$u_t(t,x) + (-\Delta)^{\alpha/2} u(t,x) + (f(u))_x = 0$$
 (CD)

for t > 0 and $x \in \mathbb{R}$,

where

• $u: (0,\infty) \times \mathbb{R} \to \mathbb{R}$

• $(-\Delta)^{\alpha/2}$ is the Fractional Laplacian operator of order $\alpha \in (0,2)$

$$(-\Delta)^{\alpha/2}u(x) = C_{n,\alpha} \int_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{n + \alpha}} dy$$

• $f(\cdot)$ is a locally Lipschitz function whose prototype is

$$f(s) = |s|^{q-1}s/q$$

with q > 1.

Few words about local diffusion problems

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\ u(0) = u_0. \end{cases}$$

For any $u_0 \in L^1(\mathbb{R})$ the solution $u \in C([0,\infty), L^1(\mathbb{R}^d))$ is given by:

$$u(t,x) = (G(t,\cdot) * u_0)(x)$$

where

$$G(t,x) = (4\pi t)^{-d/2} \exp(-\frac{|x|^2}{4t})$$

Smoothing effect

$$u \in C^{\infty}((0,\infty), \mathbb{R}^d)$$

Decay of solutions, $1 \le p \le q \le \infty$:

$$||u(t)||_{L^q(\mathbb{R}^d)} \lesssim t^{-\frac{d}{2}(\frac{1}{p}-\frac{1}{q})} ||u_0||_{L^p(\mathbb{R}^d)}$$

Theorem

For any $u_0 \in L^1(\mathbb{R}^d)$ and $p \ge 1$ we have

$$t^{\frac{d}{2}(1-\frac{1}{p})} \| u(t) - MG_t \|_{L^p} \to 0,$$

where $M = \int u_0$.

Proof:

$$(G_t * u_0)(x) - MG_t(x) = \frac{1}{(4\pi t)^{d/2}} \int_{\mathbb{R}^d} (\exp(-\frac{|x-y|^2}{4t}) - \exp(-\frac{|x|^2}{4t})) u_0(y) dy$$

+ Taylor expansion with integral reminder, etc...

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86, 271–291, (2006).

$$\begin{cases} u_t(x,t) &= J * u - u(x,t) = \int_{\mathbb{R}^d} J(x-y)u(y,t) \, dy - u(x,t), \\ &= \int_{\mathbb{R}^d} J(x-y)(u(y,t) - u(x,t)) dy \\ u(x,0) &= u_0(x), \end{cases}$$

where $J:\mathbb{R}^N\to\mathbb{R}$ be a nonnegative, radial function with $\int_{\mathbb{R}^N}J(r)dr=1$

There are two different models Case 1: $s \in (0, 1)$,

$$\frac{c_1}{|y-x|^{d+2s}} \le J(x,y) \le \frac{c_2}{|y-x|^{d+2s}}$$

Case 2: essentially J is a nice function, $(1+|x|^2)J(x)\in L^1(\mathbb{R}),$ $J=\frac{1}{1+x^2}, J=e^{-|x|}$

L.I, J.D. Rossi, JFA2007, JEE2008, JMPA2009,

- L.I, T. Ignat, D. Stancu, SIAM 2015
- 🔋 L.I., C. Cazacu, A. Pazoto, Nonlinearity 2017

$$u_t - \Delta u + \overline{b} \cdot \nabla(|u|^{q-1}u) = 0$$

- EZ for the supercritical case q > 1 + 1/N and critical case q = 1 + 1/N in \mathbb{R}^N .
- EVZ for the subcritical case 1 < q < 2 in dimension N = 1.
- Subcritical case q < 1 + 1/N in any dimension N ≥ 1: EVZ for nonnegative solutions and Carpio for changing sign solutions.
- M. Escobedo and E. Zuazua, "Large time behavior for convection-diffusion equations in \mathbf{R}^{N} ," J. Funct. Anal., vol. 100, no. 1, pp. 119–161, 1991.
- M. Escobedo, J. L. Vázquez, and E. Zuazua, "Asymptotic behaviour and source-type solutions for a diffusion-convection equation," *Arch. Rational Mech. Anal.*, vol. 124, no. 1, pp. 43–65, 1993.
- M. Escobedo, J. L. Vázquez, and E. Zuazua, "A diffusion-convection equation in several space dimensions," *Indiana Univ. Math. J.*, vol. 42, no. 4, pp. 1413–1440, 1993.
- A. Carpio, "Large time behaviour in convection-diffusion equations," Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 23, no. 3, pp. 551–574, 1996.

$$\begin{cases} u_t(t,x) - \Delta u(t,x) + (|u|^{q-1}u)_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Then

$$t^{\frac{1}{\alpha(q)}(1-\frac{1}{p})} \|u(t,\cdot) - U_M(t,\cdot)\|_{L^p(\mathbb{R})} \to 0, \quad \text{as } t \to \infty$$

where

• (EZ) If q > 2 then $\alpha(q) = 2$, U_M is the fundamental solution of the Heat Equation:

$$\begin{cases} U_t(t,x) = \Delta U(t,x) & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

• (EVZ) If 1 < q < 2 then $\alpha(q) = q$, U_M is the unique entropy solution of the Conservation law

$$\begin{cases} U_t(t,x) + (f(U))_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

• (EZ) If q = 2 then U_M is a self-similar solution of viscous Burger's eq: $U(x,t;M) = t^{-1/2}F(xt^{1/2};M) \quad \text{with } F(\eta,M) = \frac{e^{-\eta^2/4}}{K + \frac{1}{2}\int_{-\infty}^{\eta} e^{-\xi^2/4} d\xi$

$$\begin{cases} u_t(t,x) - \Delta u(t,x) + (|u|^{q-1}u)_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Then

$$t^{\frac{1}{\alpha(q)}(1-\frac{1}{p})} \|u(t,\cdot) - U_M(t,\cdot)\|_{L^p(\mathbb{R})} \to 0, \quad \text{as } t \to \infty$$

where

• (EZ) If q > 2 then $\alpha(q) = 2$, U_M is the fundamental solution of the Heat Equation:

$$\begin{cases} U_t(t,x) = \Delta U(t,x) & \text{ for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{ for } x \in \mathbb{R}. \end{cases}$$

• (EVZ) If 1 < q < 2 then $\alpha(q) = q$, U_M is the unique entropy solution of the Conservation law

$$\begin{cases} U_t(t,x) + (f(U))_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

• (EZ) If q = 2 then U_M is a self-similar solution of viscous Burger's eq: $U(x,t;M) = t^{-1/2}F(xt^{1/2};M) \quad \text{with } F(\eta,M) = \frac{e^{-\eta^2/4}}{K + \frac{1}{2}\int_{0}^{\eta} e^{-\xi^2/4}}d\xi$

$$\begin{cases} u_t(t,x) - \Delta u(t,x) + (|u|^{q-1}u)_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Then

$$t^{\frac{1}{\alpha(q)}(1-\frac{1}{p})} \|u(t,\cdot) - U_M(t,\cdot)\|_{L^p(\mathbb{R})} \to 0, \quad \text{as } t \to \infty$$

where

• (EZ) If q > 2 then $\alpha(q) = 2$, U_M is the fundamental solution of the Heat Equation:

$$\begin{cases} U_t(t,x) = \Delta U(t,x) & \text{ for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{ for } x \in \mathbb{R}. \end{cases}$$

• (EVZ) If 1 < q < 2 then $\alpha(q) = q$, U_M is the unique entropy solution of the Conservation law

$$\begin{cases} U_t(t,x) + (f(U))_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

• (EZ) If q = 2 then U_M is a self-similar solution of viscous Burger's eq: $U(x,t;M) = t^{-1/2}F(xt^{1/2};M) \quad \text{with } F(\eta,M) = \frac{e^{-\eta^2/4}}{K + \frac{1}{2}\int_0^{\eta} e^{-\xi^2/4}}d\xi$

$$\begin{cases} u_t(t,x) - \Delta u(t,x) + (|u|^{q-1}u)_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Then

<

$$t^{\frac{1}{\alpha(q)}(1-\frac{1}{p})} \|u(t,\cdot) - U_M(t,\cdot)\|_{L^p(\mathbb{R})} \to 0, \quad \text{as } t \to \infty$$

where

• (EZ) If q > 2 then $\alpha(q) = 2$, U_M is the fundamental solution of the Heat Equation:

$$\begin{cases} U_t(t,x) = \Delta U(t,x) & \text{ for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{ for } x \in \mathbb{R}. \end{cases}$$

• (EVZ) If 1 < q < 2 then $\alpha(q) = q$, U_M is the unique entropy solution of the Conservation law

$$\begin{cases} U_t(t,x) + (f(U))_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

• (EZ) If q = 2 then U_M is a self-similar solution of viscous Burger's eq:

$$U(x,t;M) = t^{-1/2} F(xt^{1/2};M) \quad \text{with } F(\eta,M) = \frac{e^{-\eta^2/4}}{K + \frac{1}{2} \int_0^{\eta} e^{-\xi^2/4} d\xi.$$

A nonlinear model: convection-diffusion

For $q \ge 1$

$$\left\{ \begin{array}{l} u_t - \Delta u + (|u|^{q-1}u)_x = 0 \text{ in } (0,\infty) \times \mathbb{R} \\ u(0) = u_0 \end{array} \right.$$

• Decay of the solutions by using

$$\frac{d}{dt}\int_{\mathbb{R}}|u|^{p}dx=-\frac{4(p-1)}{p}\int_{\mathbb{R}}|\nabla(|u|^{p/2})|^{2}dx.$$

- M. Schonbek, *Uniform decay rates for parabolic conservation laws*, Nonlinear Anal., 10(9), 943–956, (1986).
- M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in R^N, J. Funct. Anal., 100(1), 119–161, (1991).

Some ideas of the proof

 $\bullet \ {\rm For} \ q>2$

$$u(t) = S(t)u_0 + \int_0^t S(t-s)(u^q)_x(s)ds$$

and use that the nonlinear part decays faster than the linear one • q = 2 scaling: introduce $u_{\lambda}(x, t) = \lambda u(\lambda x, \lambda^2 t)$, write the equation for u_{λ} and observe that the estimates for u are equivalent to the fact that

 $u_{\lambda}(x,1) \to f_M(x) \text{ in } L^1(\mathbb{R})$

Proof: the so-called "four step method" :

- scaling write the equation for u_λ
- estimates and compactness of $\{u_{\lambda}\}$
- passage to the limit
- identification of the limit

• 1 < q < 2, read EVZ's paper, entropy solutions, Main ideea: Oleinik estimate

$$(u^{q-1})_x \le \frac{1}{t}$$

Some ideas of the proof

 $\bullet \ {\rm For} \ q>2$

$$u(t) = S(t)u_0 + \int_0^t S(t-s)(u^q)_x(s)ds$$

and use that the nonlinear part decays faster than the linear one • q = 2 scaling: introduce $u_{\lambda}(x,t) = \lambda u(\lambda x, \lambda^2 t)$, write the equation for u_{λ} and observe that the estimates for u are equivalent to the fact that

$$u_{\lambda}(x,1) \to f_M(x) \text{ in } L^1(\mathbb{R})$$

Proof: the so-called "four step method" :

- scaling write the equation for u_λ
- estimates and compactness of $\{u_{\lambda}\}$
- passage to the limit
- identification of the limit

• 1 < q < 2, read EVZ's paper, entropy solutions, Main ideea: Oleinik estimate

$$(u^{q-1})_x \le \frac{1}{t}$$

Some ideas of the proof

 $\bullet \ {\rm For} \ q>2$

$$u(t) = S(t)u_0 + \int_0^t S(t-s)(u^q)_x(s)ds$$

and use that the nonlinear part decays faster than the linear one • q = 2 scaling: introduce $u_{\lambda}(x,t) = \lambda u(\lambda x, \lambda^2 t)$, write the equation for u_{λ} and observe that the estimates for u are equivalent to the fact that

$$u_{\lambda}(x,1) \to f_M(x) \text{ in } L^1(\mathbb{R})$$

Proof: the so-called "four step method" :

- scaling write the equation for u_{λ}
- estimates and compactness of $\{u_{\lambda}\}$
- passage to the limit
- identification of the limit
- 1 < q < 2, read EVZ's paper, entropy solutions, Main ideea: Oleinik estimate

$$(u^{q-1})_x \le \frac{1}{t}.$$

Nonlocal general model

The general model is

$$\begin{cases} u_t(t,x) + \mathcal{L}[u](t,x) + \overline{b} \cdot \nabla(f(u)) = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}^N, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}^N, \end{cases}$$
(1)

where $\mathcal L$ is a Lévy type operator, $\widehat{\mathcal Lv}(\xi)=a(\xi)\hat v(\xi),$ whose symbol a is written in the form

$$a(\xi) = ik\xi + \mu(\xi) + \int_{\mathbb{R}^N} \left(1 - e^{-i\eta\xi} - i\eta\xi \mathbf{1}_{|\eta|<1}\right) \Pi(d\eta)$$

Usually $k\in\mathbb{R}^N$, μ is a positive semi-definite quadratic form on \mathbb{R}^N and Π is a positive Radon measure satisfying

$$\int_{\mathbb{R}^N} \min\{|z|^2, 1\} \Pi(dz) < \infty.$$

Two particular cases are the Laplacian, $\mathcal{L} = -\Delta$ and $\mathcal{L} = (-\Delta)^{\alpha/2}$ corresponding to k = 0, $\mu(\xi) = |\xi|^2$, $\Pi = 0$ and k = 0, $\mu(\xi) = 0$, $\Pi(dz) = |z|^{-N-\alpha}dz$ respectively.

For all ranges or parameters $\alpha \in (0,2), \, q>1,$ the model admits a unique entropy solution.

• Droniou, Gallouet, Vovelle 2003: existence and uniqueness of entropy solutions for $\alpha \in (1,2)$ and f locally Lipshitz. Alibaud 2007 : $\alpha \in (0,2)$.

• Droniou, Gallouet, Vovelle: If $f \in C^{\infty}$, $\alpha \in (1, 2)$ and $q > 1 \Longrightarrow$ there exists a unique mild solution with good regularity properties.

• When the diffusion is smaller, $\alpha \in (0, 1]$, there is non-uniqueness of weak solutions, as proved by Alibaud and Andreianov.

$$\left\{ \begin{array}{ll} u_t(t,x) + (-\Delta)^{\alpha/2} u(t,x) + a \cdot \nabla(|u|^{q-1}u) = 0 & \text{for} t > 0 \text{ and } x \in \mathbb{R}^N, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}^N. \end{array} \right.$$

Then

$$t^{a(p,q,\alpha)} \| u(t,\cdot) - U_M(t,\cdot) \|_{L^p(\mathbb{R})} \to 0, \quad \text{as} \ t \to \infty$$

where

- Critical case: $q = 1 + \frac{\alpha 1}{N} \Longrightarrow U_M$ is the unique self-similar solution $U(t, x) = t^{-N/\alpha}U(1, xt^{-1/\alpha})$ with data $U(0, x) = M\delta(x)$. Biler, Karch and Woyczyński 2001.
- Supercritical case $q > 1 + \frac{\alpha 1}{N}$, $\alpha \in (1, 2)$: U_M is the fundamental solution of the Fractional Heat Equation:

$$\left\{ \begin{array}{ll} U_t(t,x) + (-\Delta)^{\alpha/2} U(t,x) & \text{for } t > 0 \text{ and } x \in \mathbb{R}^N, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}^N. \end{array} \right.$$

1D case: Biler, Funaki and Woyczyński 1998 multi-D case: . Biler, Karch and Woyczyński 2001

$$\left\{ \begin{array}{ll} u_t(t,x) + (-\Delta)^{\alpha/2} u(t,x) + a \cdot \nabla(|u|^{q-1}u) = 0 & \text{for} t > 0 \text{ and } x \in \mathbb{R}^N, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}^N. \end{array} \right.$$

Then

$$t^{a(p,q,\alpha)}\|u(t,\cdot)-U_M(t,\cdot)\|_{L^p(\mathbb{R})}\to 0, \quad \text{as } t\to\infty$$

where

- Critical case: $q = 1 + \frac{\alpha 1}{N} \Longrightarrow U_M$ is the unique self-similar solution $U(t, x) = t^{-N/\alpha}U(1, xt^{-1/\alpha})$ with data $U(0, x) = M\delta(x)$. Biler, Karch and Woyczyński 2001.
- Supercritical case $q > 1 + \frac{\alpha 1}{N}$, $\alpha \in (1, 2)$: U_M is the fundamental solution of the Fractional Heat Equation:

$$\begin{cases} U_t(t,x) + (-\Delta)^{\alpha/2} U(t,x) & \text{for } t > 0 \text{ and } x \in \mathbb{R}^N, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}^N. \end{cases}$$

1D case: Biler, Funaki and Woyczyński 1998 multi-D case: . Biler, Karch and Woyczyński 2001

$$\left\{ \begin{array}{ll} u_t(t,x) + (-\Delta)^{\alpha/2} u(t,x) + a \cdot \nabla(|u|^{q-1}u) = 0 & \text{for} t > 0 \text{ and } x \in \mathbb{R}^N, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}^N. \end{array} \right.$$

Then

$$t^{a(p,q,\alpha)}\|u(t,\cdot)-U_M(t,\cdot)\|_{L^p(\mathbb{R})}\to 0, \quad \text{as } t\to\infty$$

where

- Critical case: $q = 1 + \frac{\alpha 1}{N} \Longrightarrow U_M$ is the unique self-similar solution $U(t, x) = t^{-N/\alpha}U(1, xt^{-1/\alpha})$ with data $U(0, x) = M\delta(x)$. Biler, Karch and Woyczyński 2001.
- Supercritical case q > 1 + ^{α−1}/_N, α ∈ (1,2) : U_M is the fundamental solution of the Fractional Heat Equation:

$$\begin{cases} U_t(t,x) + (-\Delta)^{\alpha/2} U(t,x) & \text{for } t > 0 \text{ and } x \in \mathbb{R}^N, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}^N. \end{cases}$$

1D case: Biler, Funaki and Woyczyński 1998 multi-D case: . Biler, Karch and Woyczyński 2001.

$$\begin{cases} u_t(t,x) + (-\Delta)^{\alpha/2} u(t,x) + a \cdot \nabla(|u|^{q-1}u) = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}^N, \\ u(0,x) = u_0(x) & \text{for } x \in \mathbb{R}^N. \end{cases}$$

Then

<

$$t^{a(p,q,\alpha)}\|u(t,\cdot)-U_M(t,\cdot)\|_{L^p(\mathbb{R})}\to 0, \quad \text{as } t\to\infty$$

where

- Critical case: $q = 1 + \frac{\alpha 1}{N} \Longrightarrow U_M$ is the unique self-similar solution $U(t, x) = t^{-N/\alpha}U(1, xt^{-1/\alpha})$ with data $U(0, x) = M\delta(x)$. Biler, Karch and Woyczyński 2001.
- Supercritical case q > 1 + ^{α−1}/_N, α ∈ (1,2) : U_M is the fundamental solution of the Fractional Heat Equation:

$$\begin{cases} U_t(t,x) + (-\Delta)^{\alpha/2} U(t,x) & \text{for } t > 0 \text{ and } x \in \mathbb{R}^N, \\ U(0,x) = M\delta(x) & \text{for } x \in \mathbb{R}^N. \end{cases}$$

1D case: Biler, Funaki and Woyczyński 1998 multi-D case: . Biler, Karch and Woyczyński 2001.

The case $\alpha \in (0,1)$

Theorem

For any $\alpha \in (0,1)$, q > 1, $f(u) = |u|^{q-1}u/q$ and $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ there exists a unique entropy solution u of (CD). Moreover, for any $1 \le p < \infty$, the solution u satisfies

$$\lim_{t \to \infty} t^{\frac{1}{\alpha}(1-\frac{1}{p})} \|u(t) - U(t)\|_{L^p(\mathbb{R})} = 0,$$

where \boldsymbol{U} is the unique weak solution of the equation

$$\begin{cases} U_t(t,x) + (-\Delta)^{\alpha/2} U(t,x) = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R} \\ \\ U(0,x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Proof. It follows as in Alibaud, Imbert, Karch, SIAM 2010, q = 2, by using the technique of approximation with a vanishing viscosity term:

$$(u_{\epsilon})_t + (-\Delta)^{\alpha/2} u_{\epsilon} + (f(u_{\epsilon}))_x = \epsilon \Delta u_{\epsilon}.$$

Then, the asymptotic behavior is proved for this approximating problem. We could also work directly with entropy solutions + scaling arguments in this present work.

The case $\alpha \in (0,1)$

Theorem

For any $\alpha \in (0,1)$, q > 1, $f(u) = |u|^{q-1}u/q$ and $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ there exists a unique entropy solution u of (CD). Moreover, for any $1 \le p < \infty$, the solution u satisfies

$$\lim_{t \to \infty} t^{\frac{1}{\alpha}(1-\frac{1}{p})} \|u(t) - U(t)\|_{L^p(\mathbb{R})} = 0,$$

where \boldsymbol{U} is the unique weak solution of the equation

$$\begin{cases} U_t(t,x) + (-\Delta)^{\alpha/2} U(t,x) = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R} \\ U(0,x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Proof. It follows as in Alibaud, Imbert, Karch, SIAM 2010, q = 2, by using the technique of approximation with a vanishing viscosity term:

$$(u_{\epsilon})_t + (-\Delta)^{\alpha/2} u_{\epsilon} + (f(u_{\epsilon}))_x = \epsilon \Delta u_{\epsilon}.$$

Then, the asymptotic behavior is proved for this approximating problem. We could also work directly with entropy solutions + scaling arguments in this present work.

Theorem

For any $1 < q < \alpha < 2$, $f(u) = |u|^{q-1}u/q$ and $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ nonnegative there exists a unique mild solution $u \in C([0,\infty), L^1(\mathbb{R})) \cap C_b((0,\infty), L^{\infty}(\mathbb{R}))$ of system (CD). Moreover, for any $1 \leq p < \infty$, solution u satisfies

$$\lim_{t \to \infty} t^{\frac{1}{q}(1-\frac{1}{p})} \| u(t) - U_M(t) \|_{L^p(\mathbb{R})} = 0,$$

where M is the mass of the initial data and U_{M} is the unique entropy solution of the equation

$$\begin{pmatrix} u_t + (f(u))_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ u(0) = M\delta_0. \end{cases}$$

L. IGNAT AND D. STAN. Asymptotic behaviour for fractional diffusion-convection equations. JLMS 2018.

$$w \in L^{\infty}((0,\infty), L^{1}(\mathbb{R})) \cap L^{\infty}((\tau,\infty) \times \mathbb{R}), \ \forall \tau \in (0,\infty)$$

such that:

C1) For every constant $k \in \mathbb{R}$ and $\varphi \in C_c^{\infty}((0,\infty) \times \mathbb{R})$, $\varphi \ge 0$, the following inequality holds

$$\int_0^\infty \int_{\mathbb{R}} \Big(|w-k| \frac{\partial \varphi}{\partial t} + \operatorname{sgn}(w-k)(f(w) - f(k)) \frac{\partial \varphi}{\partial x} \Big) dx dt \ge 0.$$

C2) For any bounded continuous function ψ

$$\limsup_{t\downarrow 0} \int_{\mathbb{R}} w(t,x)\psi(x)dx = M\psi(0).$$

The existence of a unique entropy solution of system (C): Liu and Pierre. System (B) has an unique entropy solution U_M , given by the N-wave profile

$$U_M(t,x) = \begin{cases} (x/t)^{\frac{1}{q-1}}, & 0 < x < r(t) \\ 0, & otherwise, \end{cases}$$

with $r(t) = (\frac{q}{q-1})^{\frac{q-1}{q}} M^{(q-1)/q} t^{1/q}.$

T.-P. Liu and M. Pierre, "Source-solutions and asymptotic behavior in conservation laws," *J. Differential Equations*, vol. 51, no. 3, pp. 419–441, 1984.

We say that $u(t,x):(0,\infty)\times\mathbb{R}\to\mathbb{R}$ is a *mild solution* of Problem (CD) if

$$u(t,x)=(K^\alpha_t\star u_0)(x)+\int_0^t(K^\alpha_{t-\sigma})_x\star f(u)(\sigma,x)d\sigma,$$
 for all $x\in\mathbb{R},\ t>0.$

Here K_t^{α} is the Fractional Heat Kernel:

$$\frac{d}{dt}K_t^{\alpha} + (-\Delta)^{\alpha/2}K_t^{\alpha} = 0, \quad K_t^{\alpha}(0,x) = \delta(x).$$

Decay of the Fractional Heat Kernel

- $\widehat{K}^{\alpha}_t(\xi) = e^{-|\xi|^{\alpha}t}.$
- K^{α}_t has the self-similar form

$$K_t^{\alpha}(x) = t^{-1/\alpha} F_{\alpha}(|x|t^{-1/\alpha}),$$

for some profile function, $F_{\alpha}(r)$.

• For any $\alpha \in (0,2)$ the profile F_{α} is $C^{\infty}(\mathbb{R})$, positive and decreasing on $(0,\infty)$, and behaves at infinity like $F_{\alpha}(r) \sim r^{-(1+\alpha)}$.

emma

For any $\alpha \in (0,2)$, $s \ge 0$ and $1 \le p \le \infty$ the kernel K_t^{α} satisfies the following estimates for any positive t:

$$\|K_t^{\alpha}\|_{L^p(\mathbb{R})} \simeq \mathcal{K}t^{-\frac{1}{\alpha}(1-\frac{1}{p})}, \qquad (2)$$

$$||D|^{s}K_{t}^{\alpha}||_{L^{p}(\mathbb{R})} \lesssim t^{-\frac{1}{\alpha}(1-\frac{1}{p})-\frac{s}{\alpha}}, \qquad (3)$$

$$||D|^s \partial_x K^{\alpha}_t ||_{L^p(\mathbb{R})} \lesssim t^{-\frac{1}{\alpha}(1-\frac{1}{p})-\frac{s+1}{\alpha}}.$$

We used the notation $|D|^s := (-\Delta)^{s/2}$.

Decay of the Fractional Heat Kernel

- $\widehat{K}^{\alpha}_t(\xi) = e^{-|\xi|^{\alpha}t}$.
- K^{α}_t has the self-similar form

$$K_t^{\alpha}(x) = t^{-1/\alpha} F_{\alpha}(|x|t^{-1/\alpha}),$$

for some profile function, $F_{\alpha}(r)$.

• For any $\alpha \in (0,2)$ the profile F_{α} is $C^{\infty}(\mathbb{R})$, positive and decreasing on $(0,\infty)$, and behaves at infinity like $F_{\alpha}(r) \sim r^{-(1+\alpha)}$.

Lemma

For any $\alpha \in (0,2)$, $s \ge 0$ and $1 \le p \le \infty$ the kernel K_t^{α} satisfies the following estimates for any positive t:

$$\|K_t^{\alpha}\|_{L^p(\mathbb{R})} \simeq \mathcal{K}t^{-\frac{1}{\alpha}(1-\frac{1}{p})}, \qquad (2)$$

$$||D|^s K_t^{\alpha}||_{L^p(\mathbb{R})} \lesssim t^{-\frac{1}{\alpha}(1-\frac{1}{p})-\frac{s}{\alpha}}, \tag{3}$$

$$||D|^s \partial_x K^{\alpha}_t||_{L^p(\mathbb{R})} \lesssim t^{-\frac{1}{\alpha}(1-\frac{1}{p})-\frac{s+1}{\alpha}}.$$

We used the notation $|D|^s := (-\Delta)^{s/2}$.

(4)

Mild solutions

For any $u_0 \in L^{\infty}(\mathbb{R})$ there exists a unique global mild solution u of Problem (CD). Moreover u satisfies:

 $Inf u_0 \le u(t, x) \le \sup u_0.$

 $\begin{array}{l} \textbf{ 0} \quad \text{If } u_0 \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R}) \text{ then} \\ u(t) \in C([0,+\infty): L^1(\mathbb{R})) \cap C_b((0,\infty), L^\infty(\mathbb{R})) \text{ and} \\ \|u(t)\|_{L^1(\mathbb{R})} \leq \|u_0\|_{L^1(\mathbb{R})}. \end{array} \end{array}$

• For any $s < \alpha + \min\{\alpha, q\} - 1$ and 1 solution <math>u satisfies $u_t \in C((0, \infty), L^p(\mathbb{R}))$ and $u \in C((0, \infty), H^{s, p}(\mathbb{R}))$.

Remark. Since $\alpha + \min\{\alpha, q\} - 1 > 1$ we have for any t > 0 that $u_x(t) \in L^p(\mathbb{R})$ for any 1 . Moreover for any <math>t > 0, the map $x \mapsto u(t, x)$ is continuous. The last property also guarantees that various integrations by parts used in the paper are allowed.

- (1) and (2) are proved by DGV.
- (3) we prove it by using fractional chain rule + technical tricks

J. Droniou, T. Gallouet, and J. Vovelle, "Global solution and smoothing effect for a non-local regularization of a hyperbolic equation," *J. Evol. Equ.*, vol. 3, no. 3, pp. 499–521, 2003.

Approximated problem

$$\begin{cases} (u_{\epsilon})_t(t,x) + (-\Delta)^{\alpha/2} u_{\epsilon}(t,x) + |u_{\epsilon}|^{q-1} (u_{\epsilon})_x = 0 & \text{for } t > 0 \text{ and } x \in \mathbb{R}, \\ u_{\epsilon}(0,x) = u_{0,\epsilon}(x) & \text{for } x \in \mathbb{R}, \end{cases}$$

$$(P_{\epsilon})$$

where $u_{0,\epsilon} > \epsilon$ is an approximation of u_0 .

Oleinik type Estimate

Let $1 < q, \alpha \leq 2$. For any $\epsilon > 0$ solution u_{ϵ} of Problem P_{ϵ} satisfies the Oleinik type estimate:

$$(u_{\epsilon}^{q-1})_x(t,x) \leq \frac{1}{t}, \quad \forall t > 0, \ x \in \mathbb{R}.$$

Denoting $z = u^{q-1}$ we have

$$z_t + (q-1)z^{1-\frac{1}{q-1}}(-\Delta)^{\alpha/2}[z^{\frac{1}{q-1}}] + zz_x = 0.$$

Moreover $w = z_x$ satisfies

$$w_t + w^2 + zw_x + z^{-\beta - 1}A(w, z) = 0$$

where

$$A(w,z) = -(2-q)w(-\Delta)^{\alpha/2}[z^{\beta+1}] + z(-\Delta)^{\alpha/2}[z^{\beta}w]$$

Question: $w \leq \frac{1}{t}$?

Main trick

Cordoba & Corboda PNAS 2003

$$(-\Delta)^{\alpha/2}(u^2) - 2u(-\Delta)^{\alpha/2}(u) \le 0$$

key estimate

Let us assume that

$$Lu = \int_{\mathbb{R}} K(x-y)(u(x) - u(y))dy.$$

For any $\beta \geq 0$ and $z \geq 0$ there exists $A_z : \mathbb{R} \to \mathbb{R}$, $A_z \leq 0$ such that

$$\left(\frac{\beta}{\beta+1}wL(z^{\beta+1}) - zL(z^{\beta}w)\right)(x_0) \le A_z(x_0)w(x_0) \tag{5}$$

at the point $x_0 \in \mathbb{R}$ where w attains its maximum.

Obs:
$$w \equiv 1$$
, $\beta = 1$ we can take $A_z \equiv 0$.
Obs: $L = -u_{xx}$, then $A_z = -\beta z^{\beta-1} z_x^2$

Main trick

Cordoba & Corboda PNAS 2003

$$(-\Delta)^{\alpha/2}(u^2) - 2u(-\Delta)^{\alpha/2}(u) \le 0$$

key estimate

Let us assume that

$$Lu = \int_{\mathbb{R}} K(x-y)(u(x) - u(y))dy.$$

For any $\beta \geq 0$ and $z \geq 0$ there exists $A_z : \mathbb{R} \to \mathbb{R}$, $A_z \leq 0$ such that

$$\left(\frac{\beta}{\beta+1}wL(z^{\beta+1}) - zL(z^{\beta}w)\right)(x_0) \le A_z(x_0)w(x_0) \tag{5}$$

at the point $x_0 \in \mathbb{R}$ where w attains its maximum.

Obs:
$$w \equiv 1$$
, $\beta = 1$ we can take $A_z \equiv 0$.
Obs: $L = -u_{xx}$, then $A_z = -\beta z^{\beta-1} z_x^2$

"Proof"

$$\begin{aligned} & \left(\frac{\beta}{\beta+1}wL(z^{\beta+1}) - zL(z^{\beta}w)\right)(x_{0}) \\ &= \frac{\beta}{\beta+1}w(x_{0})\int_{\mathbb{R}}K(x_{0} - y)(z^{\beta+1}(x_{0}) - z^{\beta+1}(y))dy \\ &\quad - z(x_{0})\int_{\mathbb{R}}K(x_{0} - y)(z^{\beta}w(x_{0}) - z^{\beta}w(y))dy \\ &\leq \frac{\beta}{\beta+1}w(x_{0})\int_{\mathbb{R}}K(x_{0} - y)(z^{\beta+1}(x_{0}) - z^{\beta+1}(y))dy \\ &\quad - z(x_{0})w(x_{0})\int_{\mathbb{R}}K(x_{0} - y)(z^{\beta}(x_{0}) - z^{\beta}(y))dy \\ &= -w(x_{0})\int_{\mathbb{R}}K(x_{0} - y)\left(\frac{z^{\beta+1}(x_{0})}{\beta+1} + \frac{\beta z^{\beta+1}(y)}{\beta+1} - z(x_{0})z^{\beta}(y)\right)dy \end{aligned}$$

- Let u be the solution of (CD) with data $u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, $u_0 \ge 0$.
 - Mass conservation: $\int_{\mathbb{R}} u(t, x) dx = M, \quad \forall t \ge 0.$
 - Hyperbolic estimate: $(u^{q-1})_x(t,x) \leq \frac{1}{t}$ for all t > 0 in $\mathcal{D}'(\mathbb{R})$.

• Upper bound:
$$0 \le u(t,x) \le \left(rac{q}{q-1}M
ight)^{1/q}t^{-1/q}$$

Decay of the spatial derivative: u_x(t, x) ≤ C(q)M^{2-q}/_qt^{-2/q}
 W^{1,1}_{loc}(ℝ) estimate:

$$\int_{|x| \le R} |u_x(t,x)| dx \le 2R C(q) M^{\frac{2-q}{q}} t^{-\frac{2}{q}} + 2 \left(\frac{q}{q-1}M\right)^{1/q} t^{-1/q} \quad \forall t > 0.$$

• Energy estimate: for every $0 < \tau < T$,

$$\int_{\tau}^{T} \int_{\mathbb{R}} |(-\Delta)^{\alpha/4} u(t,x)|^2 dx dt \leq \frac{1}{2} \int_{\mathbb{R}} u^2(\tau,x) dx \leq \frac{1}{2} \left(\frac{q}{q-1}\right)^{1/q} \tau^{-1/q} M(t,x) dx = \frac{1}{2} \left(\frac{q}{q-1}\right)^{1/q} T(t,x) dx =$$

Asymptotic Behavior. Proof

4-steps method (Kamin and Vázquez)

Step I. Rescale: $u_{\lambda}(t, x) := \lambda u(\lambda^q t, \lambda x) \Longrightarrow$

It follows that u_{λ} is a solution of the problem

$$\begin{cases} (u_{\lambda})_t + \lambda^{q-\alpha} (-\Delta)^{\alpha/2} [u_{\lambda}] + (u_{\lambda})^{q-1} (u_{\lambda})_x = 0, & x \in \mathbb{R}, t > 0, \\ u_{\lambda}(0, x) = \lambda u_0(\lambda x), & x \in \mathbb{R}. \end{cases}$$

$$(P_{\lambda})$$

Compactness of family $(u_{\lambda})_{\lambda>0}$ in $C([t_1, t_2], L^2_{loc}(\mathbb{R}))$ and apply the Aubin-Lions-Simon compactness argument to get

$$u_{\lambda} \to U$$
 in $C([t_1, t_2] : L^2_{loc}(\mathbb{R}))$ as $\lambda \to \infty$.

Step II. Tail control and convergence in $C([t_1, t_2], L^1(\mathbb{R}))$.

Step III. Identifying the limit: $U \in C_{loc}((0,\infty), L^1(\mathbb{R}))$ obtained above is an entropy solution of system (C). We know there exists a unique entropy solution of (C).

Step IV. Prove that $U(t) \in L^p(\mathbb{R})$ and $||u_{\lambda}(t) - U_M(t)||_{L^p(\mathbb{R})} \to 0$ as $\lambda \to \infty$. Then take t = 1 and obtain the result.

Multidimensional case

$$u_t + (-\Delta)^{\alpha/2}u + \partial_y(|u|^{q-1}u) = 0$$

Here the profile may be related with the solutions of

$$u_t + (-\Delta_x)^{\alpha/2} u + \partial_y (|u|^{q-1} u) = 0, u_0 = M \delta_0$$

Warning $(-\Delta)^{\alpha/2}(u(\lambda x, \lambda^2 y)) =???$

In Nonlinear Fractional Diffusion + Nonlinear convection ?

$$u_t + (-\Delta)^{\alpha/2} u^m + u^{q-1} u_x = 0.$$

Even nonlinearities

$$u_t + (-\Delta)^{\alpha/2} u + (|u|^q)_x = 0.$$

Nonlocal convection

$$u_t = J * u - u + G * u^q - u^q, 1 < q < 2$$

Nonlocal Oleinik's estimates: fake models with J. Rossi
Step like initial data + rarefraction waves

$$\varphi = \begin{cases} \varphi_- + L^1((-\infty, 0)), \\ \varphi_+ + L^1((0, \infty)). \end{cases}$$

 \bigcirc CFL conditions for global solutions, $|G| \leq C|K|$ and small initial data depending on C

$$\begin{aligned} u_t(t,x) &= \int_{\mathbb{R}} K(x-y)(u(t,y) - u(t,x))dy \\ &+ \int_{\mathbb{R}} G(x-y)f\Big(\frac{u(t,y) + u(t,x)}{2}\Big)dy, t > 0, x \in \mathbb{R}, \end{aligned}$$

Understand the competition between diffusion and the nonlocal convection

Many ideas from the nonlocal world have been used in the numerical $\ensuremath{\mathsf{context}}$

- L.I., A. Pozo, *A splitting method for the augmented Burgers equation.* BIT Numerical Mathematics (2018)
- L.I., A. Pozo, A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation. ESAIM: M2AN (2017)
- L.I., A. Pozo, E. Zuazua Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws. Math. Comp. (2015)

L.I. & A. Pozo & E. Zuazua, Math of Comp., 2015

$$u_t + \left(\frac{u^2}{2}\right)_x = 0, \qquad x \in \mathbb{R}, t > 0.$$

For large time the solution behavios as a N-wave

$$w_{p,q}(x,t) = \begin{cases} \frac{x}{t}, & -\sqrt{2pt} < x < \sqrt{2qt}, \\ 0, & \text{elsewhere.} \end{cases}$$
(6)

Lor the Lax-Friedrichs scheme, $w=w_{M_\Delta}$ is the unique solution of the continuous viscous Burgers equation

$$\begin{cases} w_t + \left(\frac{w^2}{2}\right)_x = \frac{(\Delta x)^2}{2} w_{xx}, & x \in \mathbb{R}, t > 0, \\ w(0) = M_\Delta \delta_0, \end{cases}$$
(7)

with $M_{\Delta} = \int_{\mathbb{R}} u_{\Delta}^0$.

w - parabolic profile

For Engquist-Osher and Godunov schemes, $w=w_{p_\Delta,q_\Delta}$ is the unique solution of the hyperbolic Burgers equation

$$\begin{cases} w_t + \left(\frac{w^2}{2}\right)_x = 0, \quad x \in \mathbb{R}, t > 0, \\ w(0) = M_\Delta \delta_0, \quad \lim_{t \to 0} \int_{-\infty}^x w(t, z) dz = \begin{cases} 0, & x < 0, \\ -p_\Delta, & x = 0, \\ q_\Delta - p_\Delta, & x > 0, \end{cases}$$
(8)

with
$$M_\Delta = \int_{\mathbb{R}} u_\Delta^0$$
 and

 $p_{\Delta} = -\min_{x \in \mathbb{R}} \int_{-\infty}^{x} u_{\Delta}^{0}(z) dz$ and $q_{\Delta} = \max_{x \in \mathbb{R}} \int_{x}^{\infty} u_{\Delta}^{0}(z) dz.$

w - hyperbolic profile

THANKS for your attention !!!

