25–27 avr. 2018
Institut de mathématique Simion Stoilow de l'Académie Roumaine
Fuseau horaire Europe/Bucharest

Résultats de symétrie pour des équations non locales semi-linéaires et quasi-linéaires/Symmetry results for semi-linear and quasilinear nonlocal equations

27 avr. 2018, 14:00
1h

Orateur

Yannick Sire (U. Johns Hopkins, États-Unis)

Description

Motivated by a conjecture of De Giorgi on the Allen-Cahn Equation and classification results for some its solutions, we will describe recent results related to one-dimensional symmetry for solutions of nonlocal equations involving possibly nonlinear nonlocal operators. We will concentrate mainly in low dimensions and present several ways to attack this problem. We will then describe open problems and links with nonlocal minimal surfaces. This is based on joint works with X. Cabre (UPC, Barcelona), E. Valdinoci (Universita di Milano) and M. Fazly (UT San Antonio, USA).

Auteur principal

Yannick Sire (U. Johns Hopkins, États-Unis)

Co-auteurs

E. Valdinoci (U. Milan, Italie) M. Fazly (U. Sans Antonio, États-Unis) X. Cabre (UPC Barcelone, Espagne)

Documents de présentation

Aucun document.