Apr 3 – 5, 2017
Université d'Orléans, Mathématiques
Europe/Paris timezone

Density of translates in weighted $L^p$ spaces on locally compact groups

Apr 3, 2017, 5:30 PM
45m
Salle de séminaire (Université d'Orléans, Mathématiques)

Salle de séminaire

Université d'Orléans, Mathématiques

Speaker

Dr Yulia Kuznetsova (Université de Bourgogne Franche Comté)

Description

Let $G$ be a locally compact group, and let $1\le p < \infty$. Consider the weighted $L^p$-space $L^p(G,\omega)=\{f:\int|f\omega|^p<\infty\}$, where $\omega:G\to \R$ is a positive measurable function. Under appropriate conditions on $\omega$, $G$ acts on $L^p(G,\omega)$ by translations. When is this action hypercyclic, that is, there is a function in this space such that the set of all its translations is dense in $L^p(G,\omega)$? H.Salas (1995) gave a criterion of hypercyclicity in the case $G=\Z$ . Under mild assumptions, we present a corresponding characterization for a general locally compact group $G$. Our results are obtained in a more general setting when the translations only by a subset $S\subset G$ are considered. Joint work with E. Abakumov (Paris-Est).

Presentation materials

There are no materials yet.