Jun 24 – 28, 2024
Institut de Mathématiques de Toulouse
Europe/Paris timezone

On the discrete eigenvalues of Schrödinger operators with complex potentials

Jun 27, 2024, 9:00 AM
55m
Institut de Mathématiques de Toulouse

Institut de Mathématiques de Toulouse

Université Paul Sabatier 118, route de Narbonne - Bat. 1R3 31062 Toulouse Cedex 9

Speaker

Sabine Boegli

Description

In this talk I shall present constructions of Schrödinger operators with complex-valued potentials whose spectra exhibit interesting properties. One example shows that for sufficiently large $p$, the discrete eigenvalues need not be bounded in modulus by the $L^p$ norm of the potential. This is a counterexample to the Laptev-Safronov conjecture (Comm. Math. Phys. 2009). Another construction proves optimality (in some sense) of generalisations of Lieb-Thirring inequalities to the non-selfadjoint case - thus giving us information about the accumulation rate of the discrete eigenvalues to the essential spectrum.
This talk is based on joint works with Jean-Claude Cuenin (Loughborough) and Frantisek Stampach (Prague).

Presentation materials

There are no materials yet.