24–28 juin 2024
Institut de Mathématiques de Toulouse
Fuseau horaire Europe/Paris

On the discrete eigenvalues of Schrödinger operators with complex potentials

27 juin 2024, 09:00
55m
Institut de Mathématiques de Toulouse

Institut de Mathématiques de Toulouse

Université Paul Sabatier 118, route de Narbonne - Bat. 1R3 31062 Toulouse Cedex 9

Orateur

Sabine Boegli

Description

In this talk I shall present constructions of Schrödinger operators with complex-valued potentials whose spectra exhibit interesting properties. One example shows that for sufficiently large p, the discrete eigenvalues need not be bounded in modulus by the Lp norm of the potential. This is a counterexample to the Laptev-Safronov conjecture (Comm. Math. Phys. 2009). Another construction proves optimality (in some sense) of generalisations of Lieb-Thirring inequalities to the non-selfadjoint case - thus giving us information about the accumulation rate of the discrete eigenvalues to the essential spectrum.
This talk is based on joint works with Jean-Claude Cuenin (Loughborough) and Frantisek Stampach (Prague).

Documents de présentation

Aucun document.