Focus on:
All days
Jun 5, 2023
Jun 6, 2023
Jun 7, 2023
All sessions
Session poster
Hide Contributions
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Fifth Workshop on Compressible Multiphase Flows
from
Monday, June 5, 2023 (8:00 AM)
to
Wednesday, June 7, 2023 (8:00 PM)
Monday, June 5, 2023
2:00 PM
Exemples d’études expérimentales d’écoulements diphasiques turbulents : analyse de l’influence de la phase dispersée sur la phase porteuse
-
Henda Djeridi
(
LEGI / G-INP
)
Exemples d’études expérimentales d’écoulements diphasiques turbulents : analyse de l’influence de la phase dispersée sur la phase porteuse
Henda Djeridi
(
LEGI / G-INP
)
2:00 PM - 3:00 PM
On présentera ici des exemples d’études expérimentales d’écoulements diphasiques avec et sans changement de phase pour lesquelles on montrera comment la phase dispersée (vapeur ou gaz) peut modifier la phase porteuse (liquide ou gaz). On s’attachera en particulier à quantifier les modifications des structures de la turbulence dans le cas d’un écoulement turbulent cavitant (de type marche descendante ou autour d’obstacle de type plan porteur) ainsi que dans le cas d’un écoulement turbulent d’air et de gouttelettes (effet des particules inertielles sur le sillage de plaques inclinées). (Collaborateurs : S. Barre, G. Maurice, M. Obligado, S. Smith)
3:00 PM
Pause café
Pause café
3:00 PM - 3:30 PM
3:30 PM
A relaxation approach for modeling turbulence in compressible flows
-
Olivier Hurisse
(
EDF R&D
)
A relaxation approach for modeling turbulence in compressible flows
Olivier Hurisse
(
EDF R&D
)
3:30 PM - 4:30 PM
In this talk, a thermodynamical approach for modeling turbulence in compressible flows will be presented. Modeling of muti-component flows following a thermodynamical (homogeneous) point of view is known to ensure that the resulting models inherit from several very important mathematical properties such as : hyperbolicity, entropy inequality and uniqueness of the definition of the shocks through Rankine-Hugoniot relations. This last property is difficult to obtain when considering the classical approach for modeling turbulence and it will be shown that thermodynamical modeling can help to tackle this point.
Tuesday, June 6, 2023
9:00 AM
Symmetric-hyperbolic conservation laws to model viscoelastic flows as Maxwell fluids
-
Sébastien Boyaval
(
Ecole des Ponts ParisTech, Laboratoire d'hydraulique Saint-Venant
)
Symmetric-hyperbolic conservation laws to model viscoelastic flows as Maxwell fluids
Sébastien Boyaval
(
Ecole des Ponts ParisTech, Laboratoire d'hydraulique Saint-Venant
)
9:00 AM - 10:00 AM
Invités Workshop Strasbourg 2023 https://indico.math.cnrs.fr/event/9225/ Conférences invitées: Sébastien BOYAVAL Titre : Symmetric-hyperbolic conservation laws to model viscoelastic flows as Maxwell fluids Abstract: Many Partial Differential Equations (PDEs) have been proposed to model viscoelastic flows. Seminal hyperbolic PDEs have been proposed by Maxwell in 1867 for 2D elastic fluids with stress relaxation, to ensure propagation of 1D shear waves at finite-speed while capturing the viscosity of real fluid continua. But actual computations of multi-dimensional viscoelastic flows using Maxwell's PDEs have remained limited, at least without additional diffusion that blurs the hyperbolic character of Maxwell's PDEs. We propose a new system of PDEs to model 3D viscoelastic flows of Maxwell fluids. Our system, quasilinear and symmetric-hyperbolic, unequivocally models smooth flows on small times, while ensuring propagation of wavesat finite-speed. It is inspired by the K-BKZ integral reformulation of Maxwell PDEs (proposed independently by Kaye and Bernstein, Kearsley, Zapas), but it is purely differential with additional variables for the fluid material properties, therefore more versatile. Our system rigorously unifies fluid models with elasto-dynamics for compressible solids, and it can be manipulated for various applications of the viscoelastic flow concept in environmental hydraulics (shallow-water flows) or materials engineering (non-isothermal flows).
10:00 AM
Pause café
Pause café
10:00 AM - 10:30 AM
10:30 AM
On structure-preserving schemes for continuum mechanics
-
Michael Dumbser
(
Università di Trento
)
On structure-preserving schemes for continuum mechanics
Michael Dumbser
(
Università di Trento
)
10:30 AM - 11:30 AM
In this talk we present two new classes of structure-preserving schemes for hyperbolic and thermodynamically compatible (HTC) systems with involution constraints, which have been studied for the first time by Godunov in 1961 and later in a series of papers by Godunov & Romenski. In particular, we consider the unified first order hyperbolic model of continuum mechanics proposed by Godunov, Peshkov and Romenski (GPR) that is able to describe the behavior of moving elasto-plastic solids as well as viscous and inviscid fluids within one and the same governing PDE system. The homogeneous part of the GPR model is endowed with involution constraints, namely in the absence of source terms the distortion field A and the thermal impulse J need to remain curl-free for all times. In the first part of this talk we present a new staggered semi-implicit structure-preserving scheme that is able to preserve the curl-free property of both fields exactly also on the discrete level. Furthermore, the pressure terms are discretized implicitly, in order to capture the low Mach number limit of the equations properly, while all other terms are discretized explicitly. Last but not least, the new staggered semi-implicit scheme is also able to reproduce the stiff relaxation limit of the governing PDE system properly, recovering an appropriate discretization of the compressible Navier-Stokes equations. In the second part of the talk we present a new thermodynamically compatible finite volume scheme that is exactly compatible with the overdetermined structure of the model at the semi-discrete level, making use of a discrete form of the continuous formalism introduced by Godunov in 1961. A very particular feature of our new thermodynamically compatible finite volume scheme is the fact that it directly discretizes the entropy inequality, rather than the total energy conservation law. Energy conservation is instead achieved as a mere consequence of the scheme, thanks to the thermodynamically compatible discretization of all the other equations. Computational results for several test cases are presented in order to illustrate the performance of the new schemes. References [1] S.K. Godunov. An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR, 139:521–523, 1961 [2] S.K. Godunov and E.I. Romenski. Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates. Journal of Applied Mechanics and Technical Physics, 13:868–884, 1972 [3] E. Romenski. Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Mathematical and Computer Modelling, 28:115-130, 1998 [4] I. Peshkov and E. Romenski. A hyperbolic model for viscous Newtonian flows. Continuum Mechanics and Thermodynamics, 28:85–104, 2016 [5] M. Dumbser, I. Peshkov, E. Romenski and O. Zanotti. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. Journal of Computational Physics 314:824–862, 2016 [6] M. Dumbser and V. Casulli. A Conservative, Weakly Nonlinear Semi-Implicit Finite Volume Method for the Compressible Navier-Stokes Equations with General Equation of State. Applied Mathematics and Computation. 272:479-497, 2016 [7] M. Dumbser, D.S. Balsara, M. Tavelli and F. Fambri. A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics. International Journal for Numerical Methods in Fluids, 89:16–42, 2019 [7] W. Boscheri, M. Dumbser, M. Ioriatti, I. Peshkov and E. Romenski. A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. Journal of Computational Physics, 424:109866, 2021 [8] S. Busto, M. Dumbser, I Peshkov and E. Romenski. On thermodynamically compatible finite volume schemes for continuum mechanics. SIAM Journal on Scientific Computing, 44:A1723-A1751, 2022 [9] R. Abgrall, S. Busto and M. Dumbser. A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics. Appl. Mathematics and Computation, 440:127629, 2023 [10] S. Busto and M. Dumbser. A new thermodynamically compatible finite volume scheme for magnetohydrodynamics. SIAM Journal on Numerical Analysis, 61:343-364, 2023
11:30 AM
Hamiltonian mechanics of superfluid helium-4 with numerical applications
-
Michal Pavelka
(
Charles University
)
Hamiltonian mechanics of superfluid helium-4 with numerical applications
Michal Pavelka
(
Charles University
)
11:30 AM - 12:30 PM
At very low temperatures (less than 2.17 K), helium becomes superfluid. For instance, it flows through narrow capillaries with no resistance. Although traditional models describe superfluid helium as a mixture of a normal component and a superfluid component, helium is actually a pure substance, not a mixture, that exhibits two motions. In order to describe the two motions, we use geometric mechanics, that connects classical continuum mechanics with the underlying quantum mechanics. Another aspect of superfluid helium is the presence of quantum vortices, topological defects of the phase of the wave function. Hamiltonian mechanics helps to include quantum vortices and to formulate a numerical scheme based on smoothed-particle hydrodynamics. As an application, we show a simulation of the superfluid fountain effect, where heating is converted to the motion of helium.
2:00 PM
Helicity in dispersive continuum mechanics
-
Sergey Gavrilyuk
(
Aix-Marseille Université
)
Helicity in dispersive continuum mechanics
Sergey Gavrilyuk
(
Aix-Marseille Université
)
2:00 PM - 3:00 PM
New conservation laws are obtained for the equations of dispersive continuum mechanics describing Euler–van der Waals–Korteweg’s fluids, fluids containing small gas bubbles, and long–free surface gravity waves (Serre–Green–Naghdi equations). The corresponding mathematical models are characterized by the dependence of the energy on spatial and temporal derivatives of the density. In particular, analogs of helicity invariants are deduced.
3:00 PM
Pause café
Pause café
3:00 PM - 3:30 PM
3:30 PM
Session poster
Session poster
3:30 PM - 5:30 PM
Wednesday, June 7, 2023
9:00 AM
A unified arbitrary-rate mechanical relaxation technique for compressible two-phase flows
-
Keh-Ming Shyue
(
National Taiwan University
)
A unified arbitrary-rate mechanical relaxation technique for compressible two-phase flows
Keh-Ming Shyue
(
National Taiwan University
)
9:00 AM - 10:00 AM
Our goal in this talk is to describe an extension of the arbitrary-rate mechanical relaxation techniques proposed by M. Pelanti [2] for compressible two-phase flows with non-barotropic equations of state to a barotropic two-phase flow, and a hybrid barotropic and non-barotropic two-phase flow. As in [2], we could derive the same first-order ordinary differential equation for the difference in the phasic pressure ∆p = p_1−p_2 of the form (1) ∂_t ∆p = μ (Z_1 + Z_2) ∆p, but with a different expression of the thermodynamic variable Z_k for k representing the phase of a barotropic flow. It follows that the exact solution of (1) can be used as usual for the solution update in the mechanical relaxation step of the algorithm with the finite-rate relaxation parameter μ over a time step, irrespective of the difference in the equations of state to the two-phase flow. We use the state-of-the-art finite volume method for the numerical solution of the homogeneous part of the model system without the relaxation terms. Sample numerical results will be present to show the feasibility of the algorithm for practical applications. A generalization of the current relaxation technique to a three-phase flow (cf. [1]) will be discussed briefly. [1] M. Pelanti and K.-M. Shyue, A numerical model for multiphase liquid-vapor-gas flows with interfaces and cavitation. Intl. J. Multiphase Flow, 113:208–230, 2019. [2] M. Pelanti, Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flow with heat and mass transfer. Intl. J. Multiphase Flow, 153:104097, 2022.
10:00 AM
Pause café
Pause café
10:00 AM - 10:30 AM
10:30 AM
On derivation and analysis of traffic and lubrication models
-
Ewelina Zatorska
(
Imperial College London
)
On derivation and analysis of traffic and lubrication models
Ewelina Zatorska
(
Imperial College London
)
10:30 AM - 11:30 AM
I will present our latest developments on the generalization of the Aw-Rascle model of traffic. These include existence and non-uniqueness results and also singular limit analysis leading to certain hard-congestion model. The latter model has been studied in the context of lubrication forces for the motion of rigid bodies in a viscous fluids. The proof of the singular limit will be presented in one-space dimensional case with periodic boundary conditions. I will also comment on the open problems related to generalisation of this result.
11:30 AM
Which future for Van der Waals type equations of state?
-
Romain Privat
(
Université de Lorraine
)
Which future for Van der Waals type equations of state?
Romain Privat
(
Université de Lorraine
)
11:30 AM - 12:30 PM
Despite the criticism that the Van der Waals theory behind them is too simple, despite the many attempts to replace them with more sophisticated models, despite their well-documented shortcomings, it is a fact that the cubic equations of state (CEoS) are still around, and in industry in particular. Derived from the seminal work of Van der Waals, CEoS appear indeed as reference models for people from industry working on the simulation and design of processes involving from non-associating to weakly-associating compounds. Since the 1950’s, people working on CEoS have gained experience on this class of models and a number of pertinent improvements have been proposed all through the years to overcome or reduce their shortcomings. Through this presentation, we will show how the potential of cubic equations of state for describing mixture properties has been boosted by decades of progress. In this study, we present some arguments to convince the reader that further development of this family of models is necessary and that promising results are expected in return. With Francisco Paes, Jean-Noël Jaubert.