21–23 mars 2023
Institut de Mathématiques de Toulouse
Fuseau horaire Europe/Paris

Invertibility of functionals of the Poisson process and applications

22 mars 2023, 11:20
55m
Amphi Schwartz (Institut de Mathématiques de Toulouse)

Amphi Schwartz

Institut de Mathématiques de Toulouse

Université Paul Sabatier Institut de Mathématiques de Toulouse 118, route de Narbonne F-31062 Toulouse Cedex 9

Orateur

Laurent Decreusefond (LTCI, Télécom Paris)

Description

Joint work with L. Coutin

Solving the SDE $dX(t)=r(X(t)) dt + dB(t) (1)$ is equivalent invert the map $B\mapsto B(t)-\int_0^t r(B(s)) ds$.
We study the analog of this problem on the Poisson space. Because of the Girsanov Theorem, it turns out that equivalent problem consists in inverting a time change.
We can then reinterpret the solution of the generalized Hawkes problem (find a self excited point process for a given compensator) as the analog to solving an SDE like (1). We then show a Yamada-Watanabe like theorem for weak and strong solutions to the Hawkes problem.
Some relationships are also established between Hawkes processes and directed transport between point processes.

Auteur principal

Laurent Decreusefond (LTCI, Télécom Paris)

Documents de présentation

Aucun document.