3–4 déc. 2020
Virtuel
Fuseau horaire Europe/Paris

On Asymptotic Preserving schemes for some SDEs and SPDEs in the diffusion approximation regime.

4 déc. 2020, 15:00
30m
Zoom (Virtuel)

Zoom

Virtuel

Salle 1 : https://zoom.us/j/94929969299 Salle 2 : https://zoom.us/j/98740649245 Salle 3 : https://zoom.us/j/99534523679

Orateur

M. SHMUEL RAKOTONIRINA--RICQUEBOURG (Institut Camille Jordan, UCB Lyon 1)

Description

We introduce and study a notion of Asymptotic Preserving schemes, related to convergence in distribution, for a class of slow-fast Stochastic Differential Equations (SDE). We focus on an example in the so-called diffusion approximation regime: dXtϵ=σ(Xtϵ)mtϵϵdt, where dmtϵ=mtϵϵ2dt+1ϵdβt. The solution Xϵ then converges in distribution when ϵ0 to the solution diffusion equation dXt=σ(Xt)dWt, with a Stratonovitch interpretation of the noise W. The natural schemes fail to capture the correct limiting equation, as they give a limit scheme consistent with an Itô interpretation of the noise (dXt=σ(Xt)dWt). We propose an Asymptotic Preserving scheme, in the sense that the scheme converges when ϵ0, and that the limit scheme is consistent with the limiting equation with the correct interpretation of the noise. We also present a kinetic stochastic PDE tfϵ+1ϵvxfϵ=1ϵ2Lfϵ+1ϵmϵfϵ, which also converge to a diffusion equation tρ=div(Kρ)+ρQdW, and some ideas on how to construct AP schemes for this SPDE.

Preprints: https://arxiv.org/abs/2011.02341, https://arxiv.org/abs/2009.10406

Auteurs principaux

M. SHMUEL RAKOTONIRINA--RICQUEBOURG (Institut Camille Jordan, UCB Lyon 1) M. Charles-Édouard Bréhier (ICJ, Université Lyon 1)

Documents de présentation

Aucun document.