3–4 déc. 2020
Virtuel
Fuseau horaire Europe/Paris

Modélisation numérique pour la diffraction d’ondes transitoires par des méta-interfaces résonantes

4 déc. 2020, 11:30
30m
Zoom (Virtuel)

Zoom

Virtuel

Salle 1 : https://zoom.us/j/94929969299 Salle 2 : https://zoom.us/j/98740649245 Salle 3 : https://zoom.us/j/99534523679

Orateur

Marie Touboul (Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France)

Description

Le problème physique concerne la propagation d'ondes scalaires dans le cadre de l'élasticité linéaire anti-plane en 2D à travers une rangée périodique d'inclusions $\cup_i\Omega_i$ intégrée dans une matrice $\Omega_m$, les deux milieux étant supposés homogènes et isotropes. La longueur d'onde $\lambda$ dans la matrice est supposée être beaucoup plus grande que l'espacement $h$ entre les inclusions. En définissant le nombre d'onde dans la matrice comme $k_m=2\pi/\lambda$, nous introduisons le rapport $\eta = k_m h$ qui satisfait $\eta \ll 1$ pour les configurations d'intérêt. Des résonances locales peuvent se produire pour un faible contraste entre les masses volumiques ${\rho_i}/{\rho_m}=\mathcal{O}(1)$ et un contraste élevé entre les modules de cisaillement ${\mu_i}/{\mu_m}=\mathcal{O}(\eta^2)$.

Ce problème microstructuré peut être remplacé par un problème homogénéisé équivalent (Pham-Maurel-Marigo, 2017). Ce dernier consiste à résoudre les équations volumiques de part et d'autre d'une interface épaissie d'épaisseur $a$ et des conditions de saut pour la vitesse et le vecteur de contrainte normale à travers cette interface élargie. Dû au caractère résonant, ces conditions de saut impliquent des coefficients effectifs dépendant de la fréquence et donnent donc lieu à un produit de convolution une fois transposées dans le domaine temporel. Une implémentation naïve sous cette forme serait très coûteuse et viendrait réduire les bénéfices de l'homogénéisation. Pour éviter cela, des champs auxiliaires sont introduits pour obtenir un ensemble d'équations sous une forme locale dans le domaine temporel.

Un schéma aux différences finies est utilisé pour résoudre numériquement ce problème homogénéisé. Un point M est dit irrégulier si le schéma au point M nécessite des points de calcul situés dans l'interface élargie où la solution n'est pas définie. Pour ces points, on utilise des valeurs fantômes dans l'interface élargie et des valeurs numériques directes en dehors. Ces valeurs fantômes sont construites comme un prolongement suffisamment régulier de la solution sur le bord de l'interface la plus proche. Leur construction, qui est le principe de l'ESIM (Explicit Simplified Immersed Method), est adaptée ici au cas résonant, en considérant ou nous une force dissipative.

Une analyse d'erreur locale de troncature est menée et des solutions analytiques sont calculées pour tester la précision de la méthode numérique ainsi construite. Une fois validée, celle-ci est utilisée pour explorer les effets des résonances et leur robustesse en cas de dissipation. Des comparaisons avec des simulations dans le milieu microstructuré de départ permettent également d'étudier la validité du modèle homogénéisé utilisé.

Auteurs principaux

Marie Touboul (Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France) Dr Bruno Lombard (Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France) Dr Cédric Bellis (Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France)

Documents de présentation

Aucun document.