Orateur
Description
Le problème physique concerne la propagation d'ondes scalaires dans le cadre de l'élasticité linéaire anti-plane en 2D à travers une rangée périodique d'inclusions
Ce problème microstructuré peut être remplacé par un problème homogénéisé équivalent (Pham-Maurel-Marigo, 2017). Ce dernier consiste à résoudre les équations volumiques de part et d'autre d'une interface épaissie d'épaisseur
Un schéma aux différences finies est utilisé pour résoudre numériquement ce problème homogénéisé. Un point M est dit irrégulier si le schéma au point M nécessite des points de calcul situés dans l'interface élargie où la solution n'est pas définie. Pour ces points, on utilise des valeurs fantômes dans l'interface élargie et des valeurs numériques directes en dehors. Ces valeurs fantômes sont construites comme un prolongement suffisamment régulier de la solution sur le bord de l'interface la plus proche. Leur construction, qui est le principe de l'ESIM (Explicit Simplified Immersed Method), est adaptée ici au cas résonant, en considérant ou nous une force dissipative.
Une analyse d'erreur locale de troncature est menée et des solutions analytiques sont calculées pour tester la précision de la méthode numérique ainsi construite. Une fois validée, celle-ci est utilisée pour explorer les effets des résonances et leur robustesse en cas de dissipation. Des comparaisons avec des simulations dans le milieu microstructuré de départ permettent également d'étudier la validité du modèle homogénéisé utilisé.