Speaker
Description
En optimisation de forme, on s'intéresse à des problèmes de type: $$\inf_{\Omega\in F}J(\Omega),$$ où $J:\Omega\in F\longmapsto J(\Omega)\in \mathbb{R}$ est une fonctionnelle et $F$ une classe de sous-ensembles de $\mathbb{R}^n$, avec $n\ge 1$. Il est assez classique en optimisation de forme de s'intéresser à la classe des convexes: en effet cette contrainte géométrique implique en général l'existence de la solution du problème d'optimisation et peut être la source d'apparition de formes optimales assez "irregulières" comme les polygones par exemples. Dans cet exposé nous présentons différentes méthodes numériques de parametrisation de la contrainte de convexité pour les domaines du plan ($n=2$) que nous appliquons pour résoudre différents problèmes liés à des questions de géométrie spectrale.