3–4 déc. 2020
Virtuel
Fuseau horaire Europe/Paris

Reconstruction théorique et numérique de petites déformations d'un guide d'onde

3 déc. 2020, 15:00
30m
Zoom (Virtuel)

Zoom

Virtuel

Orateur

ANGELE NICLAS (Ecole Centrale de Lyon)

Description

La localisation et la reconstruction de défauts à l’intérieur de guides d’ondes acoustiques ou électro- magnétiques est un enjeux important du contrôle non destructif des structures, par exemple pour évaluer l’état de tuyaux, de fibres optiques ou de rails de trains [1]. Le problème de reconstruction d’inhomogénéités à l’intérieur d’un guide d’onde à été étudié par différents auteurs, par exemple dans [2]. Nous nous concentrons ici sur deux types de défauts, un défaut de forme ou de courbure du guide.

Dans un guide d’onde acoustique $\Omega ∈ \mathbb{R}^2$, la propagation d’une onde en régime harmonique de fréquence $k$ générée par une source $s$ est donnée par l’équation d’Helmoltz
$$∆u + k^2u = −s \qquad \text{dans} \quad Ω.$$ Pour détecter les déformations du guide d’onde $Ω$ par rapport à un guide droit $Ω_0 = \mathbb{R}×]0, 1[$, différentes ondes de la forme $e^{ikx}$ avec $k$ variable dans un intervalle $[k_0,k_1]$ sont envoyées dans le guide d’onde, et le défaut génère une onde réfléchie $u_s$ qui est mesurée sur une tranche $Σ$ à gauche du défaut. La structure particulière de guide d’onde permet de décomposer l’onde réfléchie en somme de modes solutions d’EDP en dimension 1 sur $\mathbb{R}$. De plus, en supposant que les défauts recherchés sont de petite taille devant la largeur du guide d’onde, on justifie qu’il est possible d’effectuer une approximation de Born et trouver une expression explicite de l’onde réfléchie par le défaut. On montre alors que cette expression est inversible et on propose grâce aux mesures effectuées sur $Σ$ un algorithme d’inversion rapide basé sur la décomposition modale. On présentera le calcul de l’erreur commise par l’algorithme, et les reconstructions obtenues pour une implémentation de l’algorithme sur des données générées par éléments finis pour différents types de défauts.

Références :
[1] KHARRAT, M. and ICHCHOU, M. N. and BAREILLE, O. and ZHOU, W, Pipeline inspec- tion using a torsional guided-waves inspection system. Part 1: defectu identification, International Journal of Applied Mechanics 6, 2014.
[2] BOURGEOIS, Laurent and LUNEVILLE, Eric, The linear sampling method in a waveguide: A modal formulation, Inverse Problems 24, 2008.

Auteur principal

ANGELE NICLAS (Ecole Centrale de Lyon)

Co-auteurs

Laurent SEPPECHER (Ecole Centrale de Lyon) Eric BONNETIER (University Grenobles-Alpes) Grégory VIAL (Ecole Centrale de Lyon)

Documents de présentation