Journée Gretchen & Barry Mazur

Centre de conférences Marilyn et James Simons (IHES)

Centre de conférences Marilyn et James Simons


Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette

La journée en l'honneur de Gretchen et Barry Mazur a pour origine la création de la chaire triennale "Gretchen et Barry Mazur" grâce à un don de William Hearst III.  Le mathématicien Alexander Goncharov est le premier titulaire de la chaire. Plusieurs exposés dans des thématiques proches des travaux de Barry Mazur seront proposés lors de cette journée inaugurale.

This one-day conference in honor of Gretchen and Barry Mazur originated with the creation of the triennal Chair "Gretchen and Barry Mazur", thanks to a gift from William Hearst III.  The mathematician Alexander Goncharov is the first holder of the Chair. Several presentations in thematics related to Barry Mazur's work will be proposed.

    • 9:00 AM
      Café d'accueil
    • 1
      Motivic Fundamental Group of CM Elliptic Curves and Geometry of Bianchi Hyperbolic Threefolds

      Let N be an ideal in the ring O of gaussian integers. We consider the action of the motivic Galois group on the motivic fundamental group of the elliptic curve with CM by the ring O, punctured at the N-torsion points, and relate it to the geometry of the Bianchi threefold obtained by taking the quotient of the hyperbolic space by a congruence subgroup of GL(2,O) determined by the ideal N.

      Speaker: Prof. Alexander Goncharov (Yale University & IHES)
    • 11:00 AM
      Pause Café
    • 2
      Purity for Flat Cohomology

      The absolute cohomological purity conjecture of Grothendieck proved by Gabber ensures that on regular schemes étale cohomology classes of fixed cohomological degree extend uniquely over closed subschemes of large codimension. I will discuss the corresponding phenomenon for flat cohomology. The talk is based on joint work with Peter Scholze.

      Speaker: Prof. Kęstutis Česnavičius (Université Paris-Sud)
    • 12:30 PM
      Déjeuner Buffet
    • 3
      Application of Functional Transcendence to Counting Rational Points on Curves

      With Philipp Habegger we recently proved a height inequality, using which one can bound the number of rational points on 1-parameter families of curves in terms of the genus, the degree of the number field and the Mordell-Weil rank (but no dependence on the Faltings height). This gives an affirmative answer to a conjecture of Mazur for pencils of curves. In this talk I will give a blueprint to generalize this method to an arbitrary family of curves. In particular I will focus on:
      (1) how establishing a criterion for the Betti map to be immersive leads to the desired bound;
      (2) how to apply mixed Ax-Schanuel to establish such a criterion.
      This is work in progress, partly joint with Vesselin Dimitrov and Philipp Habegger.

      Speaker: Prof. Ziyang Gao (IMJ-PRG)
    • 3:00 PM
    • 4
      Sur le programme de Langlands p-adique

      Le programme de Langlands p-adique a pour origine les travaux de Serre et de Hida sur les familles p-adiques de formes modulaires et les représentations galoisiennes qui leur sont associées. Mazur, en collaboration avec Gouvéa et avec Coleman, a joué un grand rôle dans la maturation de ce programme, mais celui-ci n'a toujours pas de forme vraiment définitive. Je présenterai des travaux récents en lien avec ce programme.

      Speaker: Prof. Pierre Colmez (IMJ-PRG)
    • 4:15 PM
      Pause Café
    • 5
      New Rational Points of Algebraic Curves over Extension Fields

      For L/K an extension of fields and V an algebraic variety over K say that V is Diophantine Stable for the extension L/K if V(L) = V(K). That is, if `V acquires no new rational points’ when one makes the field extension from K to L. I will describe some recent results joint with Karl Rubin regarding Diophantine Stability and give a survey of related recent statistics, heuristics, and conjectures.

      Speaker: Prof. Barry Mazur (Harvard University)