Séminaire de Mathématique

Semiorthogonal Decompositions of Singular Surfaces

by A. Kuznetsov (Steklov Institute, Moscow)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

It is well known that any smooth projective toric surface has a full exceptional collection. I will talk about a generalization of this fact for singular surfaces. First, if the class group of Weil divisors of the surface is torsion free (for instance, this holds for all weighted projective planes), I will construct a semiorthogonal decomposition of the derived category with components equivalent to derived categories of modules over certain local finite dimensional algebras. When the class group has torsion, a similar semiorthogonal decomposition will be constructed for an appropriately twisted derived category. Many of these results extend to non-necessarily toric rational surfaces. This is a joint work with Joseph Karmazyn and Evgeny Shinder.

Organized by

Maxim Kontsevich

Contact
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×