Séminaire de Mathématique

Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity

par Prof. Tatiana GATEVA-IVANOVA (IMI, Bulgarian Academy of Sciences, American Univ. in Bulgaria & IHÉS)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description
We study two classes of n-generated quadratic algebras over a field K. The first is the class Cn of all n-generated PBW algebras with polynomial growth and finite global dimension. We show that a PBW algebra A is in Cn iff its Hilbert series is HA(z) = 1/(1-z)n. Furthermore each class Cn contains a unique (up to isomorphism) monomial algebra A = Kx1, … , xn › / (xj xi | 1 ≤£ i < j £ n). The second is the class of n-generated quantum binomial algebras A, where the defining relations are nondegenerate square-free binomials xy - cxy zt, with nonzero coefficients cxy. Our main result shows that the following conditions are equivalent: (i) A is a Yang-Baxter algebra, that is the set of quadratic relations R defines canonically a solution of the Yang-Baxter equation. (ii) A is an Artin-Schelter regular PBW algebra. (iii) A is a PBW algebra with polynomial growth. (iv) A is a binomial skew polynomial ring. (v) The Koszul dual A! is a quantum Grassmann algebra.
Contact
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×