Focus on:
All days
Oct 18, 2018
Oct 19, 2018
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Paris
English (United States)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Journées SL2R à Reims 2018
from
Thursday, October 18, 2018 (1:30 PM)
to
Friday, October 19, 2018 (1:00 PM)
Monday, October 15, 2018
Tuesday, October 16, 2018
Wednesday, October 17, 2018
Thursday, October 18, 2018
1:30 PM
Accueil
Accueil
1:30 PM - 2:00 PM
Room: Amphi 2
2:00 PM
Conformally covariant bi-differential operators for differential forms
-
Khalid Koufany
(
Université de Lorraine - Nancy
)
Conformally covariant bi-differential operators for differential forms
Khalid Koufany
(
Université de Lorraine - Nancy
)
2:00 PM - 2:50 PM
Room: Amphi 2
The classical Rankin-Cohen brackets are bi-differential operators from $C^\infty(\mathbb R)\times C^\infty(\mathbb R)$ into $ C^\infty(\mathbb R)$. They are covariant for the diagonal action of ${\rm SL}(2,\mathbb R)$ through principal series representations. We construct generalizations of these operators, replacing $\mathbb R$ by $\mathbb R^n,$ the group ${\rm SL}(2,\mathbb R)$ by the group ${\rm SO}_0(1,n+1)$ viewed as the conformal group of $\mathbb R^n,$ and functions by differential forms.
3:00 PM
Poisson transforms adapted to BGG-complexes
-
Christoph Harrach
(
University of Vienna (Austria)
)
Poisson transforms adapted to BGG-complexes
Christoph Harrach
(
University of Vienna (Austria)
)
3:00 PM - 3:50 PM
Room: Amphi 2
Let $G$ be a semisimple Lie group with finite centre, $K$ a maximal compact subgroup and $P$ a parabolic subgroup of $G$. We present a new construction of Poisson transforms between vector bundle valued differential forms on the homogeneous parabolic geometry $G/P$ and its corresponding Riemannian symmetric space $G/K$ which is tailored to the exterior calculus and can be fully described by invariant elements in finite dimensional representations of reductive Lie groups. Furthermore, we show how these transforms are compatible with several invariant differential operators, which induce a strong connection between Bernstein-Gelfand-Gelfand complexes on $G/P$ and twisted deRham complexes on $G/K$. Finally, we consider the special case of the real hyperbolic space and its conformal boundary and discuss Poisson transforms of differential forms with values in the bundle associated to the standard representation $\mathbb{R}^{n+1,1}$ of $G = SO(n+1,1)_0$.
4:00 PM
Pause
Pause
4:00 PM - 4:30 PM
Room: Salle de Séminaire
4:30 PM
K-theory of group C*-algebras and the BGG complex
-
Pierre Julg
(
Université d'Orléans
)
K-theory of group C*-algebras and the BGG complex
Pierre Julg
(
Université d'Orléans
)
4:30 PM - 5:20 PM
Room: Amphi 2
The Baum-Connes conjecture on the K-theory of group C*-algebras is a difficult open problem since the beginning of the 1980’s. In the last 30 years a programme has been developed to prove the Baum-Connes conjecture with coefficients for semi-simple Lie groups. The tools involved are: the flag manifolds, the BGG complex, and L2 cohomology of symmetric spaces.
5:30 PM
A class of locally compact quantum groups arising from Kohn-Nirenberg quantization
-
Victor Gayral
(
Université de Reims Champagne-Ardenne
)
A class of locally compact quantum groups arising from Kohn-Nirenberg quantization
Victor Gayral
(
Université de Reims Champagne-Ardenne
)
5:30 PM - 6:20 PM
Room: Amphi 2
Locally compact quantum group (LCQG) in the setting of von Neumann algebras (aka Kustermans-Vaes quantum groups), is believed to give the correct notion of symmetries of quantum spaces (in the setting of operator algebras). While this theory is fast growing, there are very few examples of (non-compact) LCQG. In this talk, I will explain how the good old Kohn-Nirenberg quantization allows to construct a new class of LCQG (and also why the very good old Weyl quantization doesn’t work here). This is a joint work (in progress) with Pierre Bieliavsky, Lars Tuset and Sergiy Neshveyev.
8:00 PM
Repas à partir de 20h
Repas à partir de 20h
8:00 PM - 9:00 PM
Friday, October 19, 2018
9:00 AM
Does $"ax+b"$ stand for the solvable analogue of $SL_2(\mathbb{R})$ in deformation theory ?
-
Ali Baklouti
(
Université de Sfax (Tunisie)
)
Does $"ax+b"$ stand for the solvable analogue of $SL_2(\mathbb{R})$ in deformation theory ?
Ali Baklouti
(
Université de Sfax (Tunisie)
)
9:00 AM - 9:50 AM
Room: Amphi 2
Let $G$ be a Lie group, $H$ a closed subgroup of $G$ and $\Gamma$ a discontinuous subgroup for the homogeneous space $\mathscr{X}=G/H$, which means that $\Gamma$ is a discrete subgroup of $G$ acting properly discontinuously and fixed point freely on $\mathscr{X}$. For any deformation of $\Gamma$, the deformed discrete subgroup may fail to act discontinuously on $\mathscr{X}$, except for the case when $H$ is compact. The subject of the talk is to emphasize this specific issue and to deal with some questions related to the geometry of the related parameter and deformation spaces, namely the local rigidity conjecture in the nilpotent setting. When $G$ is semi-simple, the analogue of the Selberg-Weil-Kobayashi rigidity theorem in the non-Riemannian setting is recorded, especially the role of the group $SL_2(\mathbb{R})$ as a fake twin of the solvable $"ax+b"$ is also discussed.
10:00 AM
Pause
Pause
10:00 AM - 10:30 AM
Room: Salle de Séminaire
10:30 AM
Reduction of symplectic symmetric spaces and étale affine representations
-
Yannick Voglaire
(
Université du Luxembourg
)
Reduction of symplectic symmetric spaces and étale affine representations
Yannick Voglaire
(
Université du Luxembourg
)
10:30 AM - 11:20 AM
Room: Amphi 2
We introduce a notion of symplectic reduction for symplectic symmetric spaces as a means to the study of their structure theory. We show that any such space can be written as a direct product of a semisimple and a completely symplectically reducible one. Underlying symplectic reduction is a notion of so-called pre-Lie triple system. We will explain how these are related to étale affine representations of Lie triple systems, how any symplectic symmetric space and any Jordan triple system yield such a structure, and how they allow to build new from old (symplectic) symmetric spaces.
11:30 AM
Asymptotics of characters and associated cycles of Harish-Chandra modules
-
Salah Mehdi
(
Université de Lorraine (Metz)
)
Asymptotics of characters and associated cycles of Harish-Chandra modules
Salah Mehdi
(
Université de Lorraine (Metz)
)
11:30 AM - 12:20 PM
Room: Amphi 2
Abstract: We describe a translation principle for the Dirac index of virtual $({\mathfrak g},K)$-modules. To each coherent family of such modules we attach a polynomial, on the dual of the compact Cartan subalgebra, which expresses the dependence of the leading term in the Taylor expansion of the character of the modules. Finally we will explain how this polynomial is related to the multiplicities of the associated cycle of certain Harish-Chandra modules. These results are joint with P. Pandžić, D. Vogan and R. Zierau.