Speaker
Yannick Voglaire
(Université du Luxembourg)
Description
We introduce a notion of symplectic reduction for symplectic symmetric spaces as a means to the study of their structure theory. We show that any such space can be written as a direct product of a semisimple and a completely symplectically reducible one. Underlying symplectic reduction is a notion of so-called pre-Lie triple system. We will explain how these are related to étale affine representations of Lie triple systems, how any symplectic symmetric space and any Jordan triple system yield such a structure, and how they allow to build new from old (symplectic) symmetric spaces.