Les personnes qui possèdent un compte PLM-Mathrice sont invitées à l'utiliser.
Séminaire Combinatoire et Théorie des Nombres ICJ

Sur les plus grands facteurs premiers d'entiers consécutifs et d'entiers consécutifs voisins d'un entier criblé

by Zhiwei Wang (Université de Lorraine)

mardi 6 février 2018 de au (Europe/Paris)
at ICJ, Université Lyon 1 ( Bât. Braconnier, salle Fokko du Cloux )
Description

Désignons par $P^+(n)$ (resp. $P^-(n)$) le plus grand (resp. le plus petit) facteur premier d'un entier $n$.

Pour trois entiers consécutifs, nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n-1)>P^+(n)P^+(n+1)$. En utilisant les méthodes analogues, nous pouvons obtenir un résultat plus général.

Pour deux entiers consécutifs, nous montrons que la proportion d'entiers $n$ tels que $P^+(n)<P^+(n+1)$ est plus grande que 0,1356. 

Pour deux entiers consécutif voisins d'un entiers criblé, nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+1), P^-(n)>x^{\alpha}$ pour $0<\alpha<1/3$.

De plus, nous démontrons que la proportion de nombres premiers $p$ avec $P^+(p-1)<P^+(p+1)$ est plus grand que 0,1779, sous la conjecture d'Elliott-Halberstam.