Séminaire de Probabilités commun ICJ/UMPA

Convergence forte pour les permutations aléatoires

par Benoît Collins

Europe/Paris
Fokko du Cloux (ICJ)

Fokko du Cloux

ICJ

Description
Soit P un polynôme non-commutatif quelconque en $k$ unitaires algébriquement libres $u_i$ et leur inverse, et soient $S_1^{(n)},…, S_k^{(n)}$ des matrices de permutations iid. Nous considérons la matrice aléatoire en dimension $P^{(n)}$ obtenue en remplaçant $u_i$ par $S_i^{(n)}$ et nous nous intéressons à son action sur le sous-espace vectoriel de $C^n$ des vecteurs dont la somme des coordonnées est nulle. Le spectre asymptotique de $P^{(n)}$ est approximativement connu avec forte probabilité grâce à des résultats de liberté asymptotique de Nica. Nous prouvons en plus qu’il n’y a pas d’aberration (outlier), i.e. que la convergence forte a lieu. Nous décrivons ensuite quelques conséquences en théorie des graphes. Cet exposé se base sur un preprint en collaboration avec Charles Bordenave arXiv:1801.00876.
de la même série
1 2 3 5 6 7
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×