Apr 3 – 5, 2017
Université d'Orléans, Mathématiques
Europe/Paris timezone

A limiting case for the divergence equation and related problems

Apr 4, 2017, 10:45 AM
45m
Salle de séminaire (Université d'Orléans, Mathématiques)

Salle de séminaire

Université d'Orléans, Mathématiques

Speaker

Mr Emmanuel Russ (Université Grenoble Alpes)

Description

Let $d\ge 2$, $\Omega\subset R^d$ be a smooth bounded domain and $f\in L^d(\Omega)$ with $\int_R f(x)dx=0$. Bourgain and Brezis proved that there exists a vector field $X \in W^{1;d}(\Omega)\cap L^\infty(\Omega)$ such that $div X = f$ and $||f||_{W^{1;d}}+||f||_{L^\infty}\le C ||f||_{L^d}. $ We will discuss various extensions of this result to more general functions spaces, and present some related inequalities. This talk is based on results obtained in collaboration with P. Bousquet, P. Mironescu, Y. Wang and P. L. Yung.

Presentation materials

There are no materials yet.