Workshop 2025 ANR OpArt

Europe/Paris
Albi, Institut national universitaire Jean-François-Champollion

Albi, Institut national universitaire Jean-François-Champollion

Pl. de Verdun, 81000 Albi
Description

Ce atelier de travail de l'ANR OpArt se tiendra du Lundi 15 décembre 9h au mercredi 17 décembre à l'Institut National universitaire Jean-François Champollion d'Albi.

La rencontre est l'occasion pour les membres du projet ANR et les jeunes chercheurs en lien avec le projet de présenter leurs travaux, tout en ménageant du temps pour favoriser les intéractions. 

Soutiens financiers :

  • Projet ANR OpArt (ANR-23-CE40-0016)
  • L'Université Paris Est Créteil
  • Le réseau thématique du CNRS Trétraèdre 
  • L'Institut de Mathématiques de Toulouse
  • L'Institut National Universitaire Jean-François Champollion

 

Organisateurs :

  • Alain Berthomieu (INJC/IMT Albi)
  • Paulo Carrillo Rouse (IMT)
  • Jean-Marie Lescure (UPEC)

 

    • 09:00
      Accueil, Café, Thé et viennoiseries -- Welcome, Coffee, Tea and pastries
    • 1
      Calcul de traces de projecteurs dans des C*-algèbres de groupoïdes

      Je présenterai une construction géométrique du projecteur de Rieffel de
      la C*-algèbre de la rotation irrationnelle et le calcul de sa trace.

      Orateur: Jean Renault
    • 2
      Harish-Chandra’s philosophy of cusp forms via Lie groupoids

      Harish-Chandra spent his career understanding the unitary representations of real reductive Lie groups like SL(n,R). One of the crucial points in this theory is his "philosophy of cusp forms", which says that any tempered unitary representation of a real reductive group (with compact centre) is either discrete series, meaning it is a subrepresentation of the regular representation, or it is induced from a parabolic subgroup, such as the block upper-triangular subgroup in SL(n,R). This sets up an inductive argument over ever smaller subgroups. I will describe how Harish-Chandra’s principal follows from a Lie groupoid construction due to Omar Mohsen plus some C*-algebra theory.
      (Joint work with Jacob Bradd and Nigel Higson)

      Orateur: Robert Yuncken
    • 3
      Generalised Kontsevich-Vishik trace associated with a graph

      I shall report on ongoing work with S. Scott and B. Zhang by which we
      generalise regularised spectral zeta functions to a generalised
      Kontsevich-Vishik trace associated with a Feynman graph. These in turn
      generalise Feynman amplitudes on a Riemannian manifold studied by
      Dang and Zhang [JEMS 2021] in two ways. Whereas they consider graphs
      decorated by a single Riemannian Laplacian on a Riemannian manifold, we
      consider a general closed manifold and decorate the edges of the graph
      with arbitrary classical pseudo-differential operators. Whereas Dang
      and Zhang use complex powers of the Laplacian to regularise, we
      consider general holomorphic perturbations of the operators decorating
      the edges. Similarly to their approach, our method involves several
      complex parameters in the spirit of analytic renormalisation by Speer.
      We claim that the resulting regularised Feynman amplitudes admit
      analytic continuation as meromorphic germs with linear poles in the
      sense of the works of Guo, Paycha and Zhang. We give an explicit
      determination of the affine hyperplanes supporting the poles, which only
      depends on the Betti number of the graph and the orders of the
      operators. Neither the poles nor the method by which we determine them
      make use of the underlying geometry of the manifold.

      Orateur: Sylvie Paycha
    • 12:45
      Déjeuner -- Lunch
    • 4
      Sessions de travail -- Working sessions
    • 16:00
      Goûter -- Coffee Break
    • 5
      The Mackey analogy as a stratified equivalence

      The Mackey analogy refers to a correspondence between the tempered representation theory of a real reductive group $G$ and that, much simpler, of its associated Cartan motion group $G_0$. It takes the form of a bijection, due to Higson in the complex case and Afgoustidis in the general case, between the tempered duals of these groups, which preserves certain invariants. With Nigel Higson and Angel Román, we constructed an embedding of C-algebras $C^\ast(G_0)\longrightarrow C^\ast_r(G)$, which characterizes the bijection and induces the Connes-Kasparov isomorphism. After briefly reviewing the correspondence and its C-algebraic aspects, I will report on joint work with Afgoustidis on the properties of the embedding. We will see that it preserves certain natural stratifications on the tempered duals of $G$ and $G_0$ respectively, shedding a new light on the topological properties of the Mackey bijection.

      Orateur: Pierre Clare
    • 6
      Exposé -- Talk
      Orateur: Edward McDonald
    • 7
      Exposé -- Talk
      Orateur: Clément Cren
    • 8
      Exposé -- Talk
      Orateur: Paul Le Breton
    • 10:45
      Pause Café -- Coffee Break
    • 9
      Exposé -- Talk
      Orateur: Lucas Lemoine
    • 10
      Exposé -- Talk
      Orateur: Florian Thiry
    • 12:45
      Déjeuner -- Lunch
    • 11
      Sessions de travail -- Working sessions
    • 16:00
      Pause Café -- Coffee Break
    • 12
      Stability by functional calculus of the algebra of smooth functions with compact support

      For which Lie groupoid $G$ is the convolution algebra $C_c^\infty (G)$ stable by holomorphic functional calculus in $C^*(G)$? We will answer this question completely. In particular, we will show that this is the case if the groupoid $G$ is proper.
      Joint work with Claire Debord and Kévin Massard

      Orateur: Georges Skandalis
    • 13
      Exposé -- Talk
      Orateur: Omar Mohsen
    • 14
      Exposé -- Talk
      Orateur: Jacob Bradd
    • 15
      Exposé -- Talk
      Orateur: Alessandro Contini
    • 10:45
      Pause Café -- Coffee Break
    • 16
      Exposé -- Talk
      Orateur: Iakovos Androulidakis
    • 12:15
      Déjeuner -- Lunch