Nov 5 – 7, 2025
Laboratoire de Mathématiques de Reims
Europe/Paris timezone

Lower and Upper bounds for the magnetic lowest Dirichlet-to-Neumann eigenvalue in the strong magnetic limit

Nov 5, 2025, 2:10 PM
45m
Amphi E (Laboratoire de Mathématiques de Reims)

Amphi E

Laboratoire de Mathématiques de Reims

Université de Reims Champagne Ardenne, Mathématiques - CNRS UMR9008 Moulin de la Housse B.P. 1039 - 51687 REIMS Cedex

Speaker

Bernard HELFFER (Université de Nantes)

Description

Inspired by some questions presented in a recent ArXiv preprint (version v1) by T. Chakradhar, K. Gittins, G. Habib and N. Peyerimhoff, we analyze their conjecture that the ground state energy of the magnetic Dirichlet-to-Neumann operator tends to +∞ as the magnetic field tends to +∞. More precisely, we explore refined conjectures for general domains in IR² or IR³ based on the previous analysis in the case of the half-plane and the disk.

This part is a work in collaboration with Ayman Kachmar and François Nicoleau. In connexion with old works on the magnetic Schr\"odinger operator with J. Nourrigat, we will also discuss recent results by Zhongwei Shen.

Presentation materials

There are no materials yet.