Seminar on Quantum Modularity and Resurgence
The talk will focus on quantum modularity relations satisfied by the $q$-Pochhammer symbol $(q)_N = (1-q) ... (1-q^N)$ at $q=\exp(2 \pi i x)$. These formulas can be interpreted as finite analogues of the usual modularity for the Dedekind eta-function. We'll discuss certain aspects which come very handy upon summing over $N$. We'll explain how these can be used, in the context of Kashaev's invariant of hyperbolic knots, to prove, in a few cases, Zagier's quantum modularity conjecture by means of what we currently know on the Volume Conjecture. This is based on joint work with Sandro Bettin.
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Veronica Fantini & Campbell Wheeler