Orateur
Noé Blassel
(École des Ponts ParisTech)
Description
In this work, we revisit the problem of finding asymptotic estimates for the mean metastable exit time and spectral gap of a reversible diffusion absorbed at the boundary of a bounded domain, in the small noise limit, considering here the case in which the boundary of the domain varies with the asymptotic parameter. We derive sharp asymptotics for the eigenvalues of the generator, yielding a modified Eyring-Kramers formula, and giving insight into a state-optimization problem for the accelerated sampling of transition events between metastable states.
Authors
Noé Blassel
(École des Ponts ParisTech)
Gabriel Stoltz
Tony Lelievre