Speaker
Prof.
Ana Caraiani
(Imperial College London)
Description
There are two different ways to construct families of ordinary $p$-adic Siegel modular forms. One is by $p$-adically interpolating classes in Betti cohomology, first introduced by Hida and then given a more representation-theoretic interpretation by Emerton. The other is by $p$-adically interpolating classes in coherent cohomology, once again pioneered by Hida and generalised in recent years by Boxer and Pilloni. I will explain these two constructions and then discuss joint work with James Newton and Juan Esteban Rodríguez Camargo, very much in progress, that aims to compare them.