Orateur
Description
The Cauchy identity is a formula about a sum of a product of two Schur functions over partitions and plays an important role in combinatorics, representation theory, and integrable probability. Some generalizations about such as sums of Macdonald polynomials and skew Shur functions are also known.
In this talk, I will report our recent works[1,2] with Matteo Mucciconi (Warwick University) and Tomohiro Sasamoto (Tokyo Institute of Technology) on the identities connecting the sums about the q-Whittaker functions (the case
In the language of the integrable probability, the identities can be regarded as relations between two probability measures, the full space/half space q-Whittaker measures and the periodic/free boundary Schur measures. The former measures are related to various KPZ models while the latter ones are typical models of determinantal/Pfaffian and point processes. From these relations we can immediately get the Fredholm determinant/Pfaffian formulas for distribution functions of certain random variables for KPZ models.
[1] T. Imamura, M. Mucciconi, and T. Sasamoto, Forum of Mathematics, Pi 11(e27) 1-101
[2] T. Imamura, M. Mucciconi, and T. Sasamoto, arXiv:2204.08420