Random Square-Tiled Surfaces of Large Genus and Random Multicurves on Surfaces of Large Genus
par
Amphithéâtre Léon Motchane
IHES
Probability and analysis informal seminar
(joint work with V. Delecroix, E. Goujard and P. Zograf)
I will remind how Maxim Kontsevich and Paul Norbury have counted metric ribbon graphs and how Maryam Mirzakhani has counted simple closed geodesic multicurves on hyperbolic surfaces. Both counts use Witten-Kontsevich correlators (they will be defined in the lecture with no appeals to quantum gravity).
I will present a formula for the asymptotic count of square-tiled surfaces of any fixed genus g tiled with at most N squares as N tends to infinity. This count allows, in particular, to compute Masur-Veech volumes of the moduli spaces of quadratic differentials. A deep large genus asymptotic analysis of this formula, performed by Amol Aggarwal, and the uniform large genus asymptotics of intersection numbers of Witten-Kontsevich correlators, proved by Aggarwal, combined with the results of Kontsevich, Norbury and Mirzakhani, allowed us to describe the structure of a random multi-geodesic on a hyperbolic surface of large genus and of a random square-tiled surface of large genus.
As an application I will count oriented meanders on surfaces of any genus and an asymptotic probability to get a meander by a random identification of endpoints of a random braid on a two-component surface of any genus.
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Thierry Bodineau, Pieter Lammers, Yilin Wang